Aging and its 11 hippocampal genes

Aging is being quite extensively studied these days and here is another advance in the field. Pardo et al. (2017) looked at what happens in the hippocampus of 2-months old (young) and 28-months old (old) female rats. Hippocampus is a seahorse shaped structure no more than 7 cm in length and 4 g in weight situated at the level of your temples, deep in the brain, and absolutely necessary for memory.

First the researchers tested the rats in a classical maze test (Barnes maze) designed to assess their spatial memory performance. Not surprisingly, the old performed worse than the young.

Then, they dissected the hippocampi and looked at neurogenesis and they saw that the young rats had more newborn neurons than the old. Also, the old rats had more reactive microglia, a sign of inflammation. Microglia are small cells in the brain that are not neurons but serve very important functions.

After that, the researchers looked at the hippocampal transcriptome, meaning they looked at what proteins are being expressed there (I know, transcription is not translation, but the general assumption of transcriptome studies is that the amount of protein X corresponds to the amount of the RNA X). They found 210 genes that were differentially expressed in the old, 81 were upregulated and 129 were downregulated. Most of these genes are to be found in human too, 170 to be exact.

But after looking at male versus female data, at human and mouse aging data, the authors came up with 11 genes that are de-regulated (7 up- and 4 down-) in the aging hippocampus, regardless of species or gender. These genes are involved in the immune response to inflammation. More detailed, immune system activates microglia, which stays activated and this “prolonged microglial activation leads to the release of pro-inflammatory cytokines that exacerbate neuroinflammation, contributing to neuronal loss and impairment of cognitive function” (p. 17). Moreover, these 11 genes have been associated with neurodegenerative diseases and brain cancers.


These are the 11 genes: C3 (up), Cd74  (up), Cd4 (up), Gpr183 (up), Clec7a (up), Gpr34 (down), Gapt (down), Itgam (down), Itgb2 (up), Tyrobp (up), Pld4 (down).”Up” and “down” indicate the direction of deregulation: upregulation or downregulation.

I wish the above sentence was as explicitly stated in the paper as I wrote it so I don’t have to comb through their supplemental Excel files to figure it out. Other than that, good paper, good work. Gets us closer to unraveling and maybe undoing some of the burdens of aging, because, as the actress Bette Davis said, “growing old isn’t for the sissies”.

Reference: Pardo J, Abba MC, Lacunza E, Francelle L, Morel GR, Outeiro TF, Goya RG. (13 Jan 2017, Epub ahead of print). Identification of a conserved gene signature associated with an exacerbated inflammatory environment in the hippocampus of aging rats. Hippocampus, doi: 10.1002/hipo.22703. ARTICLE

By Neuronicus, 25 January 2017



The oldest known anatomically modern humans in Europe

A couple of days ago, on December 1st, was the National Day of Romania, a small country in the South-East of Europe. In its honor, I dug out a paper that shows that some of the earliest known modern humans in Europe were also… dug out there.

Trinkaus et al. (2003) investigated the mandible of an individual found in 2002 by a Romanian speological expedition in Peștera cu Oase (the Cave with Bones), one of the caves in the SouthWest of the country, not far from where Danube meets the Carpathians.

First the authors did a lot of very fine measurement of various aspects of the jaw, including the five teeth, and then compared them with those found in other early humans and Neanderthals. The morphological features place the Oase 1 individual as an early modern human with some Neanderthal features. The accelerator mass spectrometry radiocarbon (14C) direct dating makes him the oldest early modern human discovered to that date in Europe; he’s 34,000–36,000 year old. I’m assuming is a he for no particular reason; the paper doesn’t specify anywhere whether they know the jaw owner’s gender and age. A later paper (Fu et al., 2015) says Oase 1 is even older: 37,000–42,000-year-old.

After this paper it seemed to be a race to see what country can boast to have the oldest human remains on its territory. Italy and UK successfully reassessed their own previous findings thusly: UK has a human maxilla that was incorrectly dated in 1989 but new dating makes it 44,200–39,000 year old, carefully titling their paper “The earliest evidence for anatomically modern humans in northwestern Europe” (Higham et al., 2011) while Italy’s remains that they thought for decades to be Neanderthal turned out to be 45,000-43,000 years old humans, making “the Cavallo human remains […] the oldest known European anatomically modern humans” (Benmazzi et al., 2011).

I wonder what prompted the sudden rush in reassessing the old untouched-for-decades fossils… Probably good old fashioned national pride. Fair enough. Surely it cannot have anything to do with the disdain publicly expressed by some Western Europe towards Eastern Europe, can it? Surely scientists are more open minded than some petty xenophobes, right?

Well, the above thought wouldn’t have even crossed my mind, nor would I have noticed that the Romanians’ discovery has been published in PNAS and the others in Nature, had it not been for the Fu et al. (2015) paper, also published in Nature. This paper does a genetic analysis of the Oase 1 individual and through some statistical inferences that I will not pretend to fully understand they arrive to two conclusions. First, Oase 1 had a “Neanderthal ancestor as recently as four to six generations back”. OK. Proof of interbreeding, nothing new here. But the second conclusion I will quote in full: “However, the Oase individual does not share more alleles with later Europeans than with East Asians, suggesting that the Oase population did not contribute substantially to later humans in Europe.”

Now you don’t need to know much about statistics or about basic logic either to know that from 1 (one) instance alone you cannot generalize to a whole population. That particular individual from the Oase population hasn’t contributed to later humans in Europe, NOT the entire population. Of course it is possible that that is the case, but you cannot scientifically draw that conclusion from one instance alone! This is in the abstract, so everybody can see this, but I got access to the whole paper, which I have read in the hopes against hope that maybe I’m missing something. Nope. The authors did not investigate any additional DNA and they reiterate that the Oase population did not contribute to modern-day Europeans. So it’s not a type-O. From the many questions that are crowding to get out like ‘How did it get past reviewers?’, ‘Why was it published in Nature (interesting paper, but not that interesting, we knew about interbreeding so what makes it so new and exciting)?’, the one that begs to be asked the most is: ‘Why would they say this, when stating the same thing about the Oase 1 individual instead about the Oase population wouldn’t have diminished their paper in any way?’ .

I must admit that I am getting a little paranoid in my older age. But with all the hate that seems to come out and about these days EVERYWHERE towards everything that is “not like me” and “I don’t want it to be like me”, one cannot but wonder… Who knows, maybe it is really just as simple as an overlooked mistake or some harmless national pride so all is good and life goes on, especially since the authors of all four papers discussed above are from various countries and institutions all across the Globe. Should that be the case, I offer my general apologies for suspecting darker motives behind these papers, but I’m not holding my breath.



1) Trinkaus E, Moldovan O, Milota S, Bîlgăr A, Sarcina L, Athreya S, Bailey SE, Rodrigo R, Mircea G, Higham T, Ramsey CB, & van der Plicht J. (30 Sep 2003, Epub 22 Sep 2003). An early modern human from the Peştera cu Oase, Romania. Proceedings of the National Academy of Sciences U S A,  100(20):11231-11236. PMID: 14504393, PMCID: PMC208740, DOI: 10.1073/pnas.2035108100. ARTICLE  | FREE FULLTEXT PDF

 2) Higham T, Compton T, Stringer C, Jacobi R, Shapiro B, Trinkaus E, Chandler B, Gröning F, Collins C, Hillson S, O’Higgins P, FitzGerald C, & Fagan M. (2 Nov 2011). The earliest evidence for anatomically modern humans in northwestern Europe. Nature. 479(7374):521-4. PMID: 22048314, DOI: 10.1038/nature10484. ARTICLE | FULLTEXT PDF via ResearchGate

3) Benazzi S, Douka K, Fornai C, Bauer CC, Kullmer O, Svoboda J, Pap I, Mallegni F, Bayle P, Coquerelle M, Condemi S, Ronchitelli A, Harvati K, & Weber GW. (2 Nov 2011). Early dispersal of modern humans in Europe and implications for Neanderthal behaviour. Nature, 479(7374):525-8. PMID: 22048311, DOI: 10.1038/nature10617. ARTICLE | FULLTEXT PDF via ResearchGate

4) Fu Q, Hajdinjak M, Moldovan OT, Constantin S, Mallick S, Skoglund P, Patterson N, Rohland N, Lazaridis I, Nickel B, Viola B, Prüfer K, Meyer M, Kelso J, Reich D, & Pääbo S. (13 Aug 2015, Epub 22 Jun 2015). An early modern human from Romania with a recent Neanderthal ancestor. Nature. 524(7564):216-9. PMID: 26098372, PMCID: PMC4537386, DOI:10.1038/nature14558. ARTICLE | FREE FULLTEXT PDF

By Neuronicus, 3 December 2016






How do you remember?

Memory processes like formation, maintenance and consolidation have been the subjects of extensive research and, as a result, we know quite a bit about them. And just when we thought that we are getting a pretty clear picture of the memory tableau and all that is left is a little bit of dusting around the edges and getting rid of the pink elephant in the middle of the room, here comes a new player that muddies the waters again.

DNA methylation. The attaching of a methyl group (CH3) to the DNA’s cytosine by a DNA methyltransferase (Dnmt) was considered until very recently a process reserved for the immature cells in helping them meet their final fate. In other words, DNA methylation plays a role in cell differentiation by suppressing gene expression. It has other roles in X-chromosome inactivation and cancer, but it was not suspected to play a role in memory until this decade.

Oliveira (2016) gives us a nice review of the role(s) of DNA methylation in memory formation and maintenance. First, we encounter the pharmacological studies that found that injecting Dnmt inhibitors in various parts of the brain in various species disrupted memory formation or maintenance. Next, we see the genetic studies, where mice Dnmt knock-downs and knock-outs also show impaired memory formation and maintenance. Finally, knowing which genes’ transcription is essential for memory, the researcher takes us through several papers that examine the DNA de novo methylation and demethylation of these genes in response to learning events and its role in alternative splicing.

Based on these here available data, the author proposes that activity induced DNA methylation serves two roles in memory: to “on the one hand, generate a primed and more permissive epigenome state that could facilitate future transcriptional responses and on the other hand, directly regulate the expression of genes that set the strength of the neuronal network connectivity, this way altering the probability of reactivation of the same network” (p. 590).

Here you go; another morsel of actual science brought to your fingertips by yours truly.


Reference: Oliveira AM (Oct 2016, Epub 15 Sep 2016). DNA methylation: a permissive mark in memory formation and maintenance. Learning & Memory,  23(10): 587-593. PMID: 27634149, DOI: 10.1101/lm.042739.116. ARTICLE

By Neuronicus, 22 September 2016

Another puzzle piece in the autism mystery

Just like in the case of schizophrenia, hundreds of genes have been associated with autistic spectrum disorders (ASDs). Here is another candidate.

97autism - Copy

Féron et al. (2016) reasoned that most of the info we have about the genes that are behaving badly in ASDs comes from studies that used adult cells. Because ASDs are present before or very shortly after birth, they figured that looking for genetic abnormalities in cells that are at the very early stage of ontogenesis might prove to be enlightening. Those cells are stem cells. Of the pluripotent kind. FYI, based on what they can become (a.k.a how potent they are), the stem cells are divided into omipotent, pluripotent, multipotent, oligopotent, and unipotent. So the pluripotents are very ‘potent’ indeed, having the potential of producing a perfect person.

Tongue-twisters aside, the authors’ approach is sensible, albeit non-hypothesis driven. Which means they hadn’t had anything specific in mind when they had started looking for differences in gene expression between the olfactory nasal cells obtained from 11 adult ASDs sufferers and 11 age-matched normal controls. Luckily for them, as transcriptome studies have a tendency to be difficult to replicate, they found the anomalies in the expression of genes that have been already associated with ASD. But, they also found a new one, the MOCOS (MOlybdenum COfactor Sulfurase) gene, which was poorly expressed in ASDs (downregulated, in genetic speak). The enzyme is MOCOS (am I the only one who thinks that MOCOS isolated from nasal cells is too similar to mucus? is the acronym actually a backronym?).

The enzyme is not known to play any role in the nervous system. Therefore, the researchers looked to see where the gene is expressed. Its enzyme could be found all over the brain of both mouse and human. Also, in the intestine, kidneys, and liver. So not much help there.

Next, the authors deleted this gene in a worm, Caenorhabditis elegans, and they found out that the worm’s cells have issues in dealing with oxidative stress (e.g. the toxic effects of free radicals). In addition, their neurons had abnormal synaptic transmission due to problems with vesicular packaging.

Then they managed – with great difficulty – to produce human induced pluripotent cells (iPSCs) in a Petri dish in which the gene MOCOS was partially knocked down. ‘Partially’, because the ‘totally’ did not survive. Which tells us that MOCOS is necessary for survival of iPSCs. The mutant cells had less synaptic buttons than the normal cells, meaning they formed less synapses.

The study, besides identifying a new candidate for diagnosis and treatment, offers some potential explanations for some beguiling data that other studies have brought forth, like the fact that all sorts of neurotransmitter systems seem to be impaired in ADSs, all sorts of brain regions, making very hard to grab the tiger by the tail if the tiger is sprouting a new tail when you look at it, just like the Hydra’s heads. But, discovering a molecule that is involved in an ubiquitous process like synapse formation may provide a way to leave the tiger’s tail(s) alone and focus on the teeth. In the authors’ words:

“As a molecule involved in the formation of dense core vesicles and, further down, neurotransmitter secretion, MOCOS seems to act on the container rather than the content, on the vehicle rather than one of the transported components” (p. 1123).

The knowledge uncovered by this paper makes a very good piece of the ASDs puzzle. Maybe not a corner, but a good edge. Alright, even if it’s not an edge, at least it’s a crucial piece full of details, not one of those sky pieces.

Reference: Féron F, Gepner B, Lacassagne E, Stephan D, Mesnage B, Blanchard MP, Boulanger N, Tardif C, Devèze A, Rousseau S, Suzuki K, Izpisua Belmonte JC, Khrestchatisky M, Nivet E, & Erard-Garcia M (Sep 2016, Epub 4 Aug 2016). Olfactory stem cells reveal MOCOS as a new player in autism spectrum disorders. Molecular Psychiatry, 21(9):1215-1224. PMID: 26239292, DOI: 10.1038/mp.2015.106. ARTICLE | FREE FULLTEXT PDF

By Neuronicus, 31 August 2016

One parent’s gene better than the other’s

Not all people with the same bad genetic makeup that predisposes them to a particular disease go and develop that disease or, at any rate, not with the same severity and prognosis. The question is why? After all, they have the same genes…

Here comes a study that answers that very important question. Eloy et al. (2016) looked at the most common pediatric eye cancer (1 in 15,000) called retinoblastoma (Rb). In the hereditary form of this cancer, the disease occurs if the child carries mutant (i.e. bad) copies of the RB1 tumour suppressor gene located on chromosome 13 (13q14). These copies, called alleles, are inherited by the child from the mother or from the father. But some children with this genetic disadvantage do not develop Rb. They should, so why not?

The authors studied 57 families with Rb history. They took blood and tumour samples from the participants and then did a bunch of genetic tests: DNA, RNA, and methylation analyses.

They found out that when the RB1 gene is inherited from the mother, the child has only 9.7% chances of developing Rb, but when the gene is inherited from the father the child has only 67.5% chances of developing Rb.

The mechanism for this different outcomes may reside in the differential methylation of the gene. Methylation is a chemical process that suppresses the expression of a gene, meaning that less protein is produced from that gene. The maternal gene had less methylation, meaning that more protein was produced, which was able to offer some protection against the cancer. Seems counter-intuitive, you’d think less bad protein is a good thing, but there is a long and complicated explanation for that, which, in a very simplified form, posits that other events influence the function of the resultant protein.

Again, epigenetics seem to offer explanations for pesky genetic inheritance questions. Epigenetic processes, like DNA methylation, are modalities through which traits can be inherited that are not coded in the DNA itself.

RB - Copy

Reference: Eloy P, Dehainault C, Sefta M, Aerts I, Doz F, Cassoux N, Lumbroso le Rouic L, Stoppa-Lyonnet D, Radvanyi F, Millot GA, Gauthier-Villars M, & Houdayer C (29 Feb 2016). A Parent-of-Origin Effect Impacts the Phenotype in Low Penetrance Retinoblastoma Families Segregating the c.1981C>T/p.Arg661Trp Mutation of RB1. PLoS Genetics, 12(2):e1005888. eCollection 2016. PMID: 26925970, PMCID: PMC4771840, DOI: 10.1371/journal.pgen.1005888. ARTICLE | FREE FULLTEXT PDF

By Neuronicus, 24 July 2016

The FIRSTS: The rise and fall of Pokemon (2001-2005?)

90pok - Copy

Few people know that Pokemon refers not only to a game, but also to a gene. An oncogene, to be precise, with a rather strange story.

An oncogene is a gene that promotes cancer (from oncology). Conventionally, a gene name is written in lowercase italicized letters (pokemon), whereas the protein the gene makes is not italicized (POKEMON, Pokemon, or pokemon, depending on the species). Maeda et al. (2005) first established in a Petri dish that the Pokemon is required for the growth of malignant tumors. Then, through a series of classic molecular biology experiments, the scientists found out how exactly Pokemon acts to accomplish this (by suppressing the expression of anti-cancer genes). Next, they engineered mice with pokemon overexpressed and saw that the mice with a lot of Pokemon “developed aggressive tumours” (p. 282). Then the authors checked how is this gene behaving in human cancers and found out that “Pokemon is expressed at very high levels in a subset of human lymphomas” (p. 284).

And here is how the gene got its name, according to Pier Paolo Pandolfi, the leader of the research group. Bear with me because it’s complicated. [*Takes deep breath*]: PO in POK stands for POZ domain (poxvirus and zinc finger) and K in POK stands for Krüppel (zinc finger transcription factor) whereas EMON stands for erythroid myeloid ontogenic factor. POK-EMON. Simple, eh? Phew…

Truth be told, Pandolfi first named the gene pokemon at a conference in 2001 (Simonite, 2005). Then the name has been used by researchers at various scientific meetings and poster presentations.

But when the Maeda et al. paper was published in Nature in 2005 which discovered the mechanism through which the gene promotes cancer, a lot of people, scientists and journalists alike, in an attempt to humour, flooded the internet with eye-catching titles along the lines of “Pokemon causes cancer”, “Pokemon kills you” and the like. I mean, even the researchers themselves in the abstract of the paper state: “Pokemon is aberrantly overexpressed in human cancers”. In response, The Pokémon Company threatened to sue for trademark copyright infringement because they didn’t want the game to be associated with cancer, like the gene is, even if the researches said the name is an acronym (maybe they meant backronym?). In the end, the researchers changed the name of the pokemon gene to the far less enticing zbtb7.

As the question mark in the title of the post suggests, the pokeman gene may not be entirely dead yet because there are stubborn scientists that still use the name pokemon and not zbtb7. I hope they have the cash to take on Nintendo if they decide to sue after all.

Too bad the zbtb7 (a.k.a. pokemon) gene was not a beneficial gene… Because another group of researchers named their new-found gene in 2008 pikachurin and so far, Nintendo din not make any waves… That is, probably, because Pikachurin is a protein in the eye retina that is required for proper vision by speeding the electric signals. Zip zip zip Pikachurin goes…


  1. Maeda T, Hobbs RM, Merghoub T, Guernah I, Zelent A, Cordon-Cardo C, Teruya-Feldstein J, & Pandolfi PP (20 Jan 2005). Role of the proto-oncogene Pokemon in cellular transformation and ARF repression. Nature, 433(7023):278-85. PMID: 15662416, DOI: 10.1038/nature03203. ARTICLE | FULLTEXT PDF at Univ. Barcelona
  2. Simonite T (15 Dec 2005). Pokémon blocks gene name. Nature, 438(7070):897. PMID: 16355177, DOI: 10.1038/438897a. ARTICLE 

By Neuronicus, 18 July 2016

Autism cure by gene therapy

shank3 - Copy

Nothing short of an autism cure is promised by this hot new research paper.

Among many thousands of proteins that a neuron needs to make in order to function properly there is one called SHANK3 made from the gene shank3. (Note the customary writing: by consensus, a gene’s name is written using small caps and italicized, whereas the protein’s name that results from that gene expression is written with caps).

This protein is important for the correct assembly of synapses and previous work has shown that if you delete its gene in mice they show autistic-like behavior. Similarly, some people with autism, but by far not all, have a deletion on Chromosome 22, where the protein’s gene is located.

The straightforward approach would be to restore the protein production into the adult autistic mouse and see what happens. Well, one problem with that is keeping the concentration of the protein at the optimum level, because if the mouse makes too much of it, then the mouse develops ADHD and bipolar.

So the researchers developed a really neat genetic model in which they managed to turn on and off the shank3 gene at will by giving the mouse a drug called tamoxifen (don’t take this drug for autism! Beside the fact that is not going to work because you’re not a genetically engineered mouse with a Cre-dependent genetic switch on your shank3, it is also very toxic and used only in some from of cancers when is believed that the benefits outweigh the horrible side effects).

In young adult mice, the turning on of the gene resulted in normalization of synapses in the striatum, a brain region heavily involved in autistic behaviors. The synapses were comparable to normal synapses in some aspects (from the looks, i.e. postsynaptic density scaffolding, to the works, i.e. electrophysiological properties) and even more so in others (more dendritic spines than normal, meaning more synapses, presumably). This molecular repair has been mirrored by some behavioral rescue: although these mice still had more anxiety and more coordination problems than the control mice, their social aversion and repetitive behaviors disappeared. And the really really cool part of all this is that this reversal of autistic behaviors was done in ADULT mice.

Now, when the researchers turned the gene on in 20 days old mice (which is, roughly, the equivalent of the entering the toddling stage in humans), all four behaviors were rescued: social aversion, repetitive, coordination, and anxiety. Which tells us two things: first, the younger you intervene, the more improvements you get and, second and equally important, in adult, while some circuits seem to be irreversibly developed in a certain way, some other neural pathways are still plastic enough as to be amenable to change.

Awesome, awesome, awesome. Even if only a very small portion of people with autism have this genetic problem (about 1%), even if autism spectrum disorders encompass such a variety of behavioral abnormalities, this research may spark hope for a whole range of targeted gene therapies.

Reference: Mei Y, Monteiro P, Zhou Y, Kim JA, Gao X, Fu Z, Feng G. (Epub 17 Feb 2016). Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature. doi: 10.1038/nature16971. Article | MIT press release

By Neuronicus, 19 February 2016


Yeast can make morphine

poppy - Copy

Opiates like morphine and heroin can be made at home by anybody with a home beer-brewing kit and the right strain of yeast. In 2015, two published papers and a Ph.D. dissertation described the relatively easy way to convince yeast to make morphine from sugar (the links are provided in the Reference paper). That is the bad news.

The good news is that scientists have been policing themselves (well, most of them, anyway) long before regulations are put in place to deal with technological advancements by, for example, limiting access to the laboratory, keeping things under lock and key, publishing incomplete data, and generally being very careful with what they’re doing.

Complimenting this behavior, an article published by Oye et al. (2015) outlines other measures that can be put in place so that this new piece of knowledge doesn’t increase the accessibility to opiates, thereby increasing the number of addicts, which is estimated to more than 16 million people worldwide. For example, researchers can make the morphine-producing yeast dependent on unusual nutrients or engineer the existing strain to produce less-marketable varieties of opiates or prohibit the access to made-to-order DNA sequences for this type of yeast and so on.

You may very well ask “Why did the scientists made this kind of yeast anyway?” Because some medicines are either very expensive or laborious to produce by the pharmaceutical companies, the researchers have sought a method to make these drugs more easily and cheaply by engineering bacteria, fungi, or plants to produce them for us. Insulin is a good example of an expensive and hard-to-get-by drug that we managed to engineer yeast strains to produce it for us. And opiates are still the best analgesics out there.

Reference: Oye KA, Lawson JC, & Bubela T (21 May 2015). Drugs: Regulate ‘home-brew’ opiates. Nature, 521(7552):281-3. doi: 10.1038/521281a. Article | FREE PDF

By Neuronicus, 2 January 2016

Beer spoiling bacteria, oh no! But we know now how you’re made, suckers!

64 - Copy

Over 250 years ago today, on 31 December 1759, Arthur Guinness started brewing one of the most loved adult drinks today, the Guinness beer.

As with all food and drink products, beer can be also suffer spoiling due to various bacteria. The genomes of two of these culprits – Megasphaera cerevisiae PAT 1T and Lactobacillus brevis BSO 464 – have been sequenced in 2015 by two different groups.

Funny thing though: the papers that announce the completion of the genome sequencing (see bellow References) do not talk abut the significance of their discovery. The usual template for a biology paper (or as a matter of fact any science paper) is:

Introduction: x is important because y,
Methods and Results: here is what we did to understand x,
Conclusion: now we can better tackle y.

Not these papers, which basically say, in less than a page: “This bacterium spoils beer; here is its genome. You’re welcome!”

Well played, geneticists, well played… And we are, indeed, grateful. Oh, yes, we are…


1. Kutumbaka KK, Pasmowitz J, Mategko J, Reyes D, Friedrich A, Han S, Martens-Habbena W, Neal-McKinney J, Janagama HK, & Nadala C, Samadpour M (10 Sep 2015). Draft Genome Sequence of the Beer Spoilage Bacterium Megasphaera cerevisiae Strain PAT 1T. Genome Announcements, 3(5). pii: e01045-15. doi: 10.1128/genomeA.01045-15. Article | FREE PDF | FREE GENOME

2. Bergsveinson J, Pittet V, Ewen E, Baecker N, & Ziola B (3 Dec 2015). Genome Sequence of Rapid Beer-Spoiling Isolate Lactobacillus brevis BSO 464. Genome Announcements, 3(6). pii: e01411-15. doi: 10.1128/genomeA.01411-15. Article | FREE PDF | FREE GENOME

by Neuronicus, 31 December 2015

The werewolf and his low fibroblast growth factor 13 levels

Petrus Gonsalvus, by anonymous
Petrus Gonsalvus, anonymous painting of the first recorded case of hypertrichosis in 1642. License: PD

Although they are very rare, werewolves do exist. And now the qualifier: werewolves as in people with excessive hair growth all over the body and not the more familiar kind that changes into a wolf every time there is a new moon. The condition is called hypertrichosis and its various forms have been associated with distinct genetic abnormalities.

In a previous report, DeStefano et al. (2013) identified the genetic locus of the X-linked congenital generalized hypertrichosis (CGH), which is a 19-Mb region on Xq24-27 that spans about 82 genes, resulting mainly from insertions from chromosomes 4 and 5. Now, they wanted to see what is the responsible mechanism for the disease. First, they looked at the hair follicles of a man afflicted with CGH that has hair almost all over his body and noticed some structural abnormalities. Then, they analyzed the expression of several genes from the affected region of the chromosome in this man and others with CGH and they observed that only the levels of the Fibroblast Growth Factor 13 (FGF13), a protein found in hair follicles, are much lower in CGH. Then they did some more experiments to establish the crucial role of FGF13 in regulating the follicle growth.

An interesting find of the study is that, at least in the case of hypertrichosis, is not the content of the genomic sequences that were added to chromosome X that matter, but their presence, affecting a gene that is located 1.2 Mb away from the insertion.

Reference: DeStefano GM, Fantauzzo KA, Petukhova L, Kurban M, Tadin-Strapps M, Levy B, Warburton D, Cirulli ET, Han Y, Sun X, Shen Y, Shirazi M, Jobanputra V, Cepeda-Valdes R, Cesar Salas-Alanis J, & Christiano AM ( 7 May 2013, Epub 19 Apr 2013). Position effect on FGF13 associated with X-linked congenital generalized hypertrichosis. Proceedings of the National Academy of Sciences of the U.S.A., 110(19):7790-5. doi: 10.1073/pnas.1216412110. Article | FREE FULLTEXT PDF

By Neuronicus, 17 November 2015