How do you remember?

Memory processes like formation, maintenance and consolidation have been the subjects of extensive research and, as a result, we know quite a bit about them. And just when we thought that we are getting a pretty clear picture of the memory tableau and all that is left is a little bit of dusting around the edges and getting rid of the pink elephant in the middle of the room, here comes a new player that muddies the waters again.

DNA methylation. The attaching of a methyl group (CH3) to the DNA’s cytosine by a DNA methyltransferase (Dnmt) was considered until very recently a process reserved for the immature cells in helping them meet their final fate. In other words, DNA methylation plays a role in cell differentiation by suppressing gene expression. It has other roles in X-chromosome inactivation and cancer, but it was not suspected to play a role in memory until this decade.

Oliveira (2016) gives us a nice review of the role(s) of DNA methylation in memory formation and maintenance. First, we encounter the pharmacological studies that found that injecting Dnmt inhibitors in various parts of the brain in various species disrupted memory formation or maintenance. Next, we see the genetic studies, where mice Dnmt knock-downs and knock-outs also show impaired memory formation and maintenance. Finally, knowing which genes’ transcription is essential for memory, the researcher takes us through several papers that examine the DNA de novo methylation and demethylation of these genes in response to learning events and its role in alternative splicing.

Based on these here available data, the author proposes that activity induced DNA methylation serves two roles in memory: to “on the one hand, generate a primed and more permissive epigenome state that could facilitate future transcriptional responses and on the other hand, directly regulate the expression of genes that set the strength of the neuronal network connectivity, this way altering the probability of reactivation of the same network” (p. 590).

Here you go; another morsel of actual science brought to your fingertips by yours truly.

99-dna-copy

Reference: Oliveira AM (Oct 2016, Epub 15 Sep 2016). DNA methylation: a permissive mark in memory formation and maintenance. Learning & Memory,  23(10): 587-593. PMID: 27634149, DOI: 10.1101/lm.042739.116. ARTICLE

By Neuronicus, 22 September 2016

Advertisements

Inhaling a bitter tasting solution may help with asthma (don’t try this at home, yet)

bitter - Copy (2)

Asthma is an inflammatory disease of the lungs’ airways. The airway smooth muscle (ASM) expresses a large number of G protein-coupled receptors (GPCRs). The GPCRs are proteins bound to the cell membrane that sense what happens outside the cell and thus signal the cell to engage in appropriate responses. There are many, many types of GPCRs (in the upper hundreds) all over the body. Furthermore, alternative splicing (that is reshuffling parts of the gene that codes for a protein in such a way that you can get several different proteins from the same gene) may produce new types.

In an a effort to characterize the GPCRs in the ASM in the hope of finding an asthma pharmacological target, Einstein et al. (2008) found many more types of these receptors than previously thought, produced mainly by alternative splicing. In a subsequent study, the same group found out that some of these GPCRs are the same GPCRs that are expressed by your tongue in order to taste bitterness (Desphande et al., 2010)! The researchers were not expecting this.

Moreover, the bitter receptors (called TAS2Rs) in the lungs are fully functional, that is they respond to bitter substances like quinine. The response is, surprisingly, that of relaxation of the airways. It’s surprising because the role of bitter receptors in the tongue is to signal avoidance of bitter foods, because they usually contain toxins. So Desphande et al. (2010) (and anyone else in their shoes) would have expected a similar role for the bitter receptors in the lungs: that is, upon smelling something bitter the airways would close to prevent further poisoning. The data proved this expectation to be wrong.

The work so far has been done in isolated human cells. If quinine relaxes the ASM in an Petri dish, would it do so also when the ASM is still attached to its owner? So the researchers gave some bitter inhalants to some mice who had asthma and this treatment DECREASED the airway obstruction in a dose-dependent manner.

Asthma hits 300 million people worldwide and more than a quarter million die of it per year. So this research sparks great hopes for a new treatment direction.

References:

  1. Einstein R, Jordan H, Zhou W, Brenner M, Moses EG, & Liggett SB (1 Apr 2008, Epub 24 Mar 2008). Alternative splicing of the G protein-coupled receptor superfamily in human airway smooth muscle diversifies the complement of receptors. Proceedings of the National Academy of Sciences of the United States of America, 105(13):5230-5. doi: 10.1073/pnas.0801319105. Article | FREE PDF
  1. Deshpande DA, Wang WC, McIlmoyle EL, Robinett KS, Schillinger RM, An SS, Sham JS, & Liggett SB. (Nov 2010, Epub 24 Oct 2010). Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nature Medicine, 16(11):1299-304. doi: 10.1038/nm.2237. Article | FREE PDF 

By Neuronicus, 10 March 2016