Treatment for lupus

Science has trends, like everything else. Some are longer or shorter lived, depending on how many astonishing discoveries are linked to that given subject. The 2000’s were unquestionably the years of the DNA. Many a grant have been written (and granted) for whole-genome surveys of this and that. Alternative splicing followed. The ’10s saw the rise of various -omics: transcriptomics, metabolomics, proteomics etc. Then everybody and his mamma got on the cart of epigenetics. With a side of immune stuff. Now, move aside epigenetics, here comes the microbiome. And CRISPR.

That is not to say that the not so hip subjects of the bygone years are thoroughly squeezed of knowledge and we throw them aside like some dry dead end and never touch them again. Not at all, not a bit. The trends only mark the momentary believes of the purse holders about which direction the next panaceum universalis will jump from.

Here comes a groundbreaking paper on the gut microbiome. It’s groundbreaking because it comes with a cure for systemic lupus erythematosus (SLE). Possibly autoimmune hepatitis and others autoimmune diseases as well.

An autoimmune disease is a terrible malady that is often incurable and sometimes deadly. It happens when the immune system starts attacking the body. One hypothesis as to why that happens posits that after a particular infection, maybe a particularly nasty one, the immune system doesn’t stop attacking, but now in the absence of an enemy it turns on its own body in genetically susceptible individuals.

Vieira et al. (2018) worked with genetically susceptible mice. And the bombshell comes right there in the first page: after treatment with an oral antibiotic (vancomycin or ampicillin, but not neomycin), mice genetically designed to develop lupus had lower “mortality, lupus-related autoantibodies, and autoimmune manifestations” (p. 1156). Then the researchers took a closer look at the bodies of these mice and observed that 82% of the mice had spleens and livers infected with Enterococcus gallinarum, a gut bacterium that should stay in the gut. But this bacterium is capable of weakening the gut barriers by loosening the tightness of the junctions between gut cells and then migrate to liver, spleen, and lymph nodes. Its high abundance in these places triggers a systemic immune response. Then the authors force-fed some germ-free mice with E. galinarum and saw that the mice developed systemic autoimmune pathology.

As if that’s not enough of a news story, the researchers developed a vaccine against this bacterium. The vaccine is very specific (being made of heat-killed E. gallinarum) and results in reduced levels of serum autoantibodies and prolonged survival rate in the lupus-prone mice.

So people don’t quibble, and rightly so, that those are rodents and humans are not (well, most of them, anyway), the authors looked at the liver biopsies of three humans with SLE and five with autoimmune hepatitis (AIH). They were positive for E. gallinarum, but the controls, i. e. healthy humans, were not. Also, when healthy human liver cells were stimulated with E. gallinarum they displayed autoimmune responses, just like in the murine cells. Finally, you don’t have to undergo a liver biopsy to see if you’re infected with E. gallinarum, just a specific blood test to see if you have increased antibody titers against this bug (or its RNA) as most SLE and AIH patients did.

Needless to say, I am extremely happy with this paper. Who wouldn’t be?! It’s a cure paper! I know, I know, they don’t say that, but what does this sound to you?:

“Administration of oral vancomycin or an intramuscular vaccine against E. gallinarum prevent translocation, Th17/Tfh cell induction, autoantibody production and autoimmune-related mortality (Supplemental, p. 62).”

Call it a very promising cure or a highly effective treatment if you like, but it stares you in the face for what it is as it did the researchers who already patented their stuff and are currently conducting clinical trials.

Most of the paper is in the Supplemental material, not in the 4 pages and a bit in Science. So even if the paper is under the paywall, the Supplementals are not. Be ready for a 71 page worth of 167 MB of data though.

134 lupus treat.jpg

REFERENCE: Manfredo Vieira S, Hiltensperger M, Kumar V, Zegarra-Ruiz D, Dehner C, Khan N, Costa FRC, Tiniakou E, Greiling T, Ruff W, Barbieri A, Kriegel C, Mehta SS, Knight JR, Jain D, Goodman AL, Kriegel MA (9 Mar 2018). Translocation of a gut pathobiont drives autoimmunity in mice and humans.  Science, 359(6380):1156-1161. doi: 10.1126/science.aar7201. PMID: 29590047, DOI: 10.1126/science.aar7201. ARTICLE |  Supplemental Material | Yale press release

By Neuronicus, 8 April 2018

No Link Between Mass Shootings & Mental Illness

On Valentine’s Day another horrifying school mass shooting happened in USA, leaving 17 people dead. Just like after the other mass shootings, a lot of people – from media to bystanders, from gun lovers to gun critics, from parents to grandparents, from police to politicians – talk about the link between mental illness and mass shootings. As one with advanced degrees in both psychology and neuroscience, I am tired to explain over and over again that there is no significant link between the two! Mass shootings happen because an angry person has had enough sorrow, stress, rejection and/or disappointment and HAS ACCESS TO A MASS KILLING WEAPON. Yeah, I needed the caps. Sometimes scientists too need to shout to be heard.

So here is the abstract of a book chapter called straightforwardly “Mass Shootings and Mental Illness”. The entire text is available at the links in the reference below.

From Knoll & Annas (2015):

“Common Misperceptions

  • Mass shootings by people with serious mental illness represent the most significant relationship between gun violence and mental illness.
  • People with serious mental illness should be considered dangerous.
  • Gun laws focusing on people with mental illness or with a psychiatric diagnosis can effectively prevent mass shootings.
  • Gun laws focusing on people with mental illness or a psychiatric diagnosis are reasonable, even if they add to the stigma already associated with mental illness.

Evidence-Based Facts

  • Mass shootings by people with serious mental illness represent less than 1% of all yearly gun-related homicides. In contrast, deaths by suicide using firearms account for the majority of yearly gun-related deaths.
  • The overall contribution of people with serious mental illness to violent crimes is only about 3%. When these crimes are examined in detail, an even smaller percentage of them are found to involve firearms.
  • Laws intended to reduce gun violence that focus on a population representing less than 3% of all gun violence will be extremely low yield, ineffective, and wasteful of scarce resources. Perpetrators of mass shootings are unlikely to have a history of involuntary psychiatric hospitalization. Thus, databases intended to restrict access to guns and established by guns laws that broadly target people with mental illness will not capture this group of individuals.
  • Gun restriction laws focusing on people with mental illness perpetuate the myth that mental illness leads to violence, as well as the misperception that gun violence and mental illness are strongly linked. Stigma represents a major barrier to access and treatment of mental illness, which in turn increases the public health burden”.

REFERENCE: Knoll, James L. & Annas, George D. (2015). Mass Shootings and Mental Illness. In book: Gun Violence and Mental Illness, Edition: 1st, Chapter: 4, Publisher: American Psychiatric Publishing, Editors: Liza H. Gold, Robert I. Simon. ISBN-10: 1585624985, ISBN-13: 978-1585624980. FULLTEXT PDF via ResearchGate | FULLTEXT PDF via Psychiatry Online

The book chapter is not a peer-reviewed document, even if both authors are Professors of Psychiatry. To quiet putative voices raising concerns about that, here is a peer-reviewed paper with open access that says basically the same thing:

Swanson et al. (2015) looked at large scale (thousands to tens of thousands of individuals) data to see if there is any relationship between violence, gun violence, and mental illness. They concluded that “epidemiologic studies show that the large majority of people with serious mental illnesses are never violent. However, mental illness is strongly associated with increased risk of suicide, which accounts for over half of US firearms–related fatalities”. The last sentence is reminiscent of the finding that stricter gun control laws lower suicide rate.

REFERENCE: Swanson JW, McGinty EE, Fazel S, Mays VM (May 2015). Mental illness and reduction of gun violence and suicide: bringing epidemiologic research to policy. Annals of Epidemiology, 25(5): 366–376. doi: 10.1016/j.annepidem.2014.03.004, PMCID: PMC4211925. FULLTEXT | FULLTEXT PDF.

Further peer-reviewed bibliography (links to fulltext pdfs):

  1. Guns, anger, and mental disorders: Results from the National Comorbidity Survey Replication (NCS-R): “a large number of individuals in the United States have anger traits and also possess firearms at home (10.4%) or carry guns outside the home (1.6%).”
  2. News Media Framing of Serious Mental Illness and Gun Violence in the United States, 1997-2012: “most news coverage occurred in the wake of mass shootings, and “dangerous people” with serious mental illness were more likely than “dangerous weapons” to be mentioned as a cause of gun violence.”
  3. The Link Between Mental Illness and Firearm Violence: Implications for Social Policy and Clinical Practice: “Firearm violence is a significant and preventable public health crisis. Mental illness is a weak risk factor for violence despite popular misconceptions reflected in the media and policy”.
  4. Using Research Evidence to Reframe the Policy Debate Around Mental Illness and Guns: Process and Recommendations: “restricting firearm access on the basis of certain dangerous behaviors is supported by the evidence; restricting access on the basis of mental illness diagnoses is not”.
  5. Mental Illness, Mass Shootings, and the Politics of American Firearms: “notions of mental illness that emerge in relation to mass shootings frequently reflect larger cultural stereotypes and anxieties about matters such as race/ethnicity, social class, and politics. These issues become obscured when mass shootings come to stand in for all gun crime, and when “mentally ill” ceases to be a medical designation and becomes a sign of violent threat”.

131 gun - Copy

By Neuronicus, 25 February 2018

Old chimpanzees get Alzheimer’s pathology

Alzheimer’s Disease (AD) is the most common type of dementia with a progression that can span decades. Its prevalence is increasing steadily, particularly in the western countries and Australia. So some researchers speculated that this particular disease might be specific to humans. For various reasons, either genetic, social, or environmental.

A fresh e-pub brings new evidence that Alzheimer’s might plague other primates as well. Edler et al. (2017) studied the brains of 20 old chimpanzees (Pan troglodytes) for a whole slew of Alzheimer’s pathology markers. More specifically, they looked for these markers in brain regions commonly affected by AD, like the prefrontal cortex, the midtemporal gyrus, and the hippocampus.

Alzheimer’s markers, like Tau and Aβ lesions, were present in the chimpanzees in an age-dependent manner. In other words, the older the chimp, the more severe the pathology.

Interestingly, all 20 animals displayed some form of Alzheimer’s pathology. This finding points to another speculation in the field which is: dementia is just part of normal aging. Meaning we would all get it, eventually, if we would live long enough; some people age younger and some age older, as it were. This hypothesis, however, is not favored by most researchers not the least because is currently unfalsifiable. The longest living humans do not show signs of dementia so how long is long enough, exactly? But, as the authors suggest, “Aβ deposition may be part of the normal aging process in chimpanzees” (p. 24).

Unfortunately, “the chimpanzees in this study did not participate in formal behavioral or cognitive testing” (p. 6). So we cannot say if the animals had AD. They had the pathological markers, yes, but we don’t know if they exhibited the disease as is not uncommon to find these markers in humans who did not display any behavioral or cognitive symptoms (Driscoll et al., 2006). In other words, one might have tau deposits but no dementia symptoms. Hence the title of my post: “Old chimpanzees get Alzheimer’s pathology” and not “Old chimpanzees get Alzheimer’s Disease”

Good paper, good methods and stats. And very useful because “chimpanzees share 100% sequence homology and all six tau isoforms with humans” (p. 4), meaning we have now a closer to us model of the disease so we can study it more, even if primate research has taken significant blows these days due to some highly vocal but thoroughly misguided groups. Anyway, the more we know about AD the closer we are of getting rid of it, hopefully. And, soon enough, the aforementioned misguided groups shall have to face old age too with all its indignities and my guess is that in a couple of decades or so there will be fresh money poured into aging diseases research, primates be damned.

121-chimps get Alz - Copy

REFERENCE: Edler MK, Sherwood CC, Meindl RS, Hopkins WD, Ely JJ, Erwin JM, Mufson EJ, Hof PR, & Raghanti MA. (EPUB July 31, 2017). Aged chimpanzees exhibit pathologic hallmarks of Alzheimer’s disease. Neurobiology of Aging, PII: S0197-4580(17)30239-7, DOI: http://dx.doi.org/10.1016/j.neurobiolaging.2017.07.006. ABSTRACT  | Kent State University press release

By Neuronicus, 23 August 2017

Save

Save

Midichlorians, midichloria, and mitochondria

Nathan Lo is an evolutionary biologist interested in creepy crawlies, i.e. arthropods. Well, he’s Australian, so I guess that comes with the territory (see what I did there?). While postdoc’ing, he and his colleagues published a paper (Sassera et al., 2006) that would seem boring for anybody without an interest in taxonomy, a truly under-appreciated field.

The paper describes a bacterium that is a parasite for the mitochondria of a tick species called Ixodes ricinus, the nasty bugger responsible for Lyme disease. The authors obtained a female tick from Berlin, Germany and let it feed on a hamster until it laid eggs. By using genetic sequencing (you can use kits these days to extract the DNA, do PCR, gels and cloning, pretty much everything), electron microscopy (real powerful microscopes) and phylogenetic analysis (using computer softwares to see how closely related some species are) the authors came to the conclusion that this parasite they were working on is a new species. So they named it. And below is the full account of the naming, from the horse’s mouth, as it were:

“In accordance with the guidelines of the International Committee of Systematic Bacteriology, unculturable bacteria should be classified as Candidatus (Murray & Stackebrandt, 1995). Thus we propose the name ‘Candidatus Midichloria mitochondrii’ for the novel bacterium. The genus name Midichloria (mi.di.chlo′ria. N.L. fem. n.) is derived from the midichlorians, organisms within the fictional Star Wars universe. Midichlorians are microscopic symbionts that reside within the cells of living things and ‘‘communicate with the Force’’. Star Wars creator George Lucas stated that the idea of the midichlorians is based on endosymbiotic theory. The word ‘midichlorian’ appears to be a blend of the words mitochondrion and chloroplast. The specific epithet, mitochondrii (mi.to′chon.drii. N.L. n. mitochondrium -i a mitochondrion; N.L. gen. n. mitochondrii of a mitochondrion), refers to the unique intramitochondrial lifestyle of this bacterium. ‘Candidatus M. mitochondrii’ belongs to the phylum Proteobacteria, to the class Alphaproteobacteria and to the order Rickettsiales. ‘Candidatus M. mitochondrii’ is assigned on the basis of the 16S rRNA (AJ566640) and gyrB gene sequences (AM159536)” (p. 2539).

George Lucas gave his blessing to the Christening (of course he did).

119-midi - Copy1 - Copy.jpg

Acknowledgements: Thanks go to Ms. BBD who prevented me from making a fool of myself (this time!) on the social media by pointing out to me that midichloria are real and that they are a mitochondrial parasite.

REFERENCE: Sassera D, Beninati T, Bandi C, Bouman EA, Sacchi L, Fabbi M, Lo N. (Nov. 2006). ‘Candidatus Midichloria mitochondrii’, an endosymbiont of the tick Ixodes ricinus with a unique intramitochondrial lifestyle. International Journal of Systematic and Evolutionary Microbiology, 56(Pt 11): 2535-2540. PMID: 17082386, DOI: 10.1099/ijs.0.64386-0. ABSTRACT | FREE FULLTEXT PDF 

By Neuronicus, 29 July 2017

Aging and its 11 hippocampal genes

Aging is being quite extensively studied these days and here is another advance in the field. Pardo et al. (2017) looked at what happens in the hippocampus of 2-months old (young) and 28-months old (old) female rats. Hippocampus is a seahorse shaped structure no more than 7 cm in length and 4 g in weight situated at the level of your temples, deep in the brain, and absolutely necessary for memory.

First the researchers tested the rats in a classical maze test (Barnes maze) designed to assess their spatial memory performance. Not surprisingly, the old performed worse than the young.

Then, they dissected the hippocampi and looked at neurogenesis and they saw that the young rats had more newborn neurons than the old. Also, the old rats had more reactive microglia, a sign of inflammation. Microglia are small cells in the brain that are not neurons but serve very important functions.

After that, the researchers looked at the hippocampal transcriptome, meaning they looked at what proteins are being expressed there (I know, transcription is not translation, but the general assumption of transcriptome studies is that the amount of protein X corresponds to the amount of the RNA X). They found 210 genes that were differentially expressed in the old, 81 were upregulated and 129 were downregulated. Most of these genes are to be found in human too, 170 to be exact.

But after looking at male versus female data, at human and mouse aging data, the authors came up with 11 genes that are de-regulated (7 up- and 4 down-) in the aging hippocampus, regardless of species or gender. These genes are involved in the immune response to inflammation. More detailed, immune system activates microglia, which stays activated and this “prolonged microglial activation leads to the release of pro-inflammatory cytokines that exacerbate neuroinflammation, contributing to neuronal loss and impairment of cognitive function” (p. 17). Moreover, these 11 genes have been associated with neurodegenerative diseases and brain cancers.

112hc-copy

These are the 11 genes: C3 (up), Cd74  (up), Cd4 (up), Gpr183 (up), Clec7a (up), Gpr34 (down), Gapt (down), Itgam (down), Itgb2 (up), Tyrobp (up), Pld4 (down).”Up” and “down” indicate the direction of deregulation: upregulation or downregulation.

I wish the above sentence was as explicitly stated in the paper as I wrote it so I don’t have to comb through their supplemental Excel files to figure it out. Other than that, good paper, good work. Gets us closer to unraveling and maybe undoing some of the burdens of aging, because, as the actress Bette Davis said, “growing old isn’t for the sissies”.

Reference: Pardo J, Abba MC, Lacunza E, Francelle L, Morel GR, Outeiro TF, Goya RG. (13 Jan 2017, Epub ahead of print). Identification of a conserved gene signature associated with an exacerbated inflammatory environment in the hippocampus of aging rats. Hippocampus, doi: 10.1002/hipo.22703. ARTICLE

By Neuronicus, 25 January 2017

Save

Save

Don’t eat snow

Whoever didn’t roll out a tongue to catch a few snowflakes? Probably only those who never encountered snow.

The bad news is that snow, particularly urban snow is bad, really bad for you. The good news is that this was not always the case. So there is hope that in the far future it will be pristine again.

Nazarenko et al. (2016) constructed a very clever contraption that reminds me of NASA space exploration instruments. The authors refer to this by the humble name of ‘environmental chamber’, but is in fact a complex construction with different modules designed to measure out how car exhaust and snow interact (see Fig. 1).

110-copy-2
Fig. 1 from Nazarenko et al. (2016, DOI: 10.1039/c5em00616c). Released under CC BY-NC 3.0.

After many experiments, researchers concluded that snow absorbs pollutants very effectively. Among the many kinds of organic compounds soaked by snow in just one hour after exposure to fume exhaust, there were the infamous BTEX (benzene, toluene, ethylbenzene, and xylenes). The amounts of these chemicals in the snow were not at all negligible; to give you an example, the BTEX concentration increased from virtually 0 to 50 and up to 380 ug kg-1. The authors provide detailed measurements for all the 40+ compounds they have identified.

Needles to say, many these compounds are known carcinogenics. Snow absorbs them, alters their size distributions, and then it melts… Some of them may be released back in the air as they are volatile, some will go in the ground and rivers as polluted water. After this gloomy reality check, I’ll leave you with the words of the researchers:

“The accumulation and transfer of pollutants from exhaust – to snow – to meltwater need to be considered by regulators and policy makers as an important area of focus for mitigation with the aim to protect public health and the environment” (p. 197).

110-copy

Reference: Nazarenko Y, Kurien U, Nepotchatykh O, Rangel-Alvarado RB, & Ariya PA. (Feb 2016). Role of snow and cold environment in the fate and effects of nanoparticles and select organic pollutants from gasoline engine exhaust. Environmental Science: Processes & Impacts, 18(2):190-199. doi: 10.1039/c5em00616c. ARTICLE | FREE FULTEXT PDF 

By Neuronicus, 26 December 2016

Save

Save

Soccer and brain jiggling

There is no news or surprise that strong hits to the head produce transient or permanent brain damage. But how about mild hits produced by light objects like, say, a volley ball or soccer ball?

During a game of soccer, a player is allowed to touch the ball with any part of his/her body minus the hands. Therefore, hitting the ball with the head, a.k.a. soccer heading, is a legal move and goals marked through such a move are thought to be most spectacular by the refined connoisseur.

A year back, in 2015, the United States Soccer Federation forbade the heading of the ball by children 10 years old and younger after a class-action lawsuit against them. There has been some data that soccer players display loss of brain matter that is associated with cognitive impairment, but such studies were correlational in nature.

Now, Di Virgilio et al. (2016) conducted a study designed to explore the consequences of soccer heading in more detail. They recruited 19 young amateur soccer players, mostly male, who were instructed to perform 20 rotational headings as if responding to corner kicks in a game. The ball was delivered by a machine at a speed of approximately 38 kph. The mean force of impact for the group was 13.1 ± 1.9 g. Immediately after the heading session and at 24 h, 48 h and 2 weeks post-heading, the authors performed a series of tests, among which are a transcranial magnetic stimulation (TMS) recording, a cognitive function assessment (by using the Cambridge Neuropsychological Test Automated Battery), and a postural control test.

Not being a TMS expert myself, I was wondering how do you record with a stimulator? TMS stimulates, it doesn’t measure anything. Or so I thought. The authors delivered brief  (1 ms) stimulating impulses to the brain area that controls the leg (primary motor cortex). Then they placed an electrode over the said muscle (rectus femoris or quadriceps femoris) and recorded how the muscle responded. Pretty neat. Moreover, the authors believe that they can make inferences about levels of inhibitory chemicals in the brain from the way the muscle responds. Namely, if the muscle is sluggish in responding to stimulation, then the brain released an inhibitory chemical, like GABA (gamma-amino butyric acid), hence calling this process corticomotor inhibition. Personally, I find this GABA inference a bit of a leap of faith, but, like I said, I am not fully versed in TMS studies so it may be well documented. Whether or not GABA is responsible for the muscle sluggishness, one thing is well documented though: this sluggishness is the most consistent finding in concussions.

The subjects had impaired short term and long term memory functions immediately after the ball heading, but not 24 h or more later. Also transient was the corticomotor inhibition. In other words, soccer ball heading results in measurable changes in brain function. Changes for the worst.

Even if these changes are transient, there is no knowing (as of yet) what prolonged ball heading might do. There is ample evidence that successive concussions have devastating effects on the brain. Granted, soccer heading does not produce concussions, at least in this paper’s setting, but I cannot think that even sub-concussion intensity brain disruption can be good for you.

On a lighter note, although the title of the paper features the word “soccer”, the rest o the paper refers to the game as “football”. I’ll let you guess the authors’ nationality or at least the continent of provenance ;).

109-football-copy

Reference: Di Virgilio TG, Hunter A, Wilson L, Stewart W, Goodall S, Howatson G, Donaldson DI, & Ietswaart M. (Nov 2016, Epub 23 Oct 2016). Evidence for Acute Electrophysiological and Cognitive Changes Following Routine Soccer Heading. EBioMedicine, 13:66-71. PMID: 27789273, DOI: 10.1016/j.ebiom.2016.10.029. ARTICLE | FREE FULLTEXT PDF

By Neuronicus, 20 December 2016

Amusia and stroke

Although a complete musical anti-talent myself, that doesn’t prohibit me from fully enjoying the works of the masters in the art. When my family is out of earshot, I even bellow – because it cannot be called music – from the top of my lungs alongside the most famous tenors ever recorded. A couple of days ago I loaded one of my most eclectic playlists. While remembering my younger days as an Iron Maiden concert goer (I never said I listen only to classical music :D) and screaming the “Fear of the Dark” chorus, I wondered what’s new on the front of music processing in the brain.

And I found an interesting recent paper about amusia. Amusia is, as those of you with ancient Greek proclivities might have surmised, a deficit in the perception of music, mainly the pitch but sometimes rhythm and other aspects of music. A small percentage of the population is born with it, but a whooping 35 to 69% of stroke survivors exhibit the disorder.

So Sihvonen et al. (2016) decided to take a closer look at this phenomenon with the help of 77 stroke patients. These patients had an MRI scan within the first 3 weeks following stroke and another one 6 months poststroke. They also completed a behavioral test for amusia within the first 3 weeks following stroke and again 3 months later. For reasons undisclosed, and thus raising my eyebrows, the behavioral assessment was not performed at 6 months poststroke, nor an MRI at the 3 months follow-up. It would be nice to have had behavioral assessment with brain images at the same time because a lot can happen in weeks, let alone months after a stroke.

Nevertheless, the authors used a novel way to look at the brain pictures, called voxel-based lesion-symptom mapping (VLSM). Well, is not really novel, it’s been around for 15 years or so. Basically, to ascertain the function of a brain region, researchers either get people with a specific brain lesion and then look for a behavioral deficit or get a symptom and then they look for a brain lesion. Both approaches have distinct advantages but also disadvantages (see Bates et al., 2003). To overcome the disadvantages of these methods, enter the scene VLSM, which is a mathematical/statistical gimmick that allows you to explore the relationship between brain and function without forming preconceived ideas, i.e. without forcing dichotomous categories. They also looked at voxel-based morphometry (VBM), which a fancy way of saying they looked to see if the grey and white matter differ over time in the brains of their subjects.

After much analyses, Sihvonen et al. (2016) conclude that the damage to the right hemisphere is more likely conducive to amusia, as opposed to aphasia which is due mainly to damage to the left hemisphere. More specifically,

“damage to the right temporal areas, insula, and putamen forms the crucial neural substrate for acquired amusia after stroke. Persistent amusia is associated with further [grey matter] atrophy in the right superior temporal gyrus (STG) and middle temporal gyrus (MTG), locating more anteriorly for rhythm amusia and more posteriorly for pitch amusia.”

The more we know, the better chances we have to improve treatments for people.

104-copy

unless you’re left-handed, then things are reversed.

References:

1. Sihvonen AJ, Ripollés P, Leo V, Rodríguez-Fornells A, Soinila S, & Särkämö T. (24 Aug 2016). Neural Basis of Acquired Amusia and Its Recovery after Stroke. Journal of Neuroscience, 36(34):8872-8881. PMID: 27559169, DOI: 10.1523/JNEUROSCI.0709-16.2016. ARTICLE  | FULLTEXT PDF

2.Bates E, Wilson SM, Saygin AP, Dick F, Sereno MI, Knight RT, & Dronkers NF (May 2003). Voxel-based lesion-symptom mapping. Nature Neuroscience, 6(5):448-50. PMID: 12704393, DOI: 10.1038/nn1050. ARTICLE

By Neuronicus, 9 November 2016

Save

Another puzzle piece in the autism mystery

Just like in the case of schizophrenia, hundreds of genes have been associated with autistic spectrum disorders (ASDs). Here is another candidate.

97autism - Copy

Féron et al. (2016) reasoned that most of the info we have about the genes that are behaving badly in ASDs comes from studies that used adult cells. Because ASDs are present before or very shortly after birth, they figured that looking for genetic abnormalities in cells that are at the very early stage of ontogenesis might prove to be enlightening. Those cells are stem cells. Of the pluripotent kind. FYI, based on what they can become (a.k.a how potent they are), the stem cells are divided into omipotent, pluripotent, multipotent, oligopotent, and unipotent. So the pluripotents are very ‘potent’ indeed, having the potential of producing a perfect person.

Tongue-twisters aside, the authors’ approach is sensible, albeit non-hypothesis driven. Which means they hadn’t had anything specific in mind when they had started looking for differences in gene expression between the olfactory nasal cells obtained from 11 adult ASDs sufferers and 11 age-matched normal controls. Luckily for them, as transcriptome studies have a tendency to be difficult to replicate, they found the anomalies in the expression of genes that have been already associated with ASD. But, they also found a new one, the MOCOS (MOlybdenum COfactor Sulfurase) gene, which was poorly expressed in ASDs (downregulated, in genetic speak). The enzyme is MOCOS (am I the only one who thinks that MOCOS isolated from nasal cells is too similar to mucus? is the acronym actually a backronym?).

The enzyme is not known to play any role in the nervous system. Therefore, the researchers looked to see where the gene is expressed. Its enzyme could be found all over the brain of both mouse and human. Also, in the intestine, kidneys, and liver. So not much help there.

Next, the authors deleted this gene in a worm, Caenorhabditis elegans, and they found out that the worm’s cells have issues in dealing with oxidative stress (e.g. the toxic effects of free radicals). In addition, their neurons had abnormal synaptic transmission due to problems with vesicular packaging.

Then they managed – with great difficulty – to produce human induced pluripotent cells (iPSCs) in a Petri dish in which the gene MOCOS was partially knocked down. ‘Partially’, because the ‘totally’ did not survive. Which tells us that MOCOS is necessary for survival of iPSCs. The mutant cells had less synaptic buttons than the normal cells, meaning they formed less synapses.

The study, besides identifying a new candidate for diagnosis and treatment, offers some potential explanations for some beguiling data that other studies have brought forth, like the fact that all sorts of neurotransmitter systems seem to be impaired in ADSs, all sorts of brain regions, making very hard to grab the tiger by the tail if the tiger is sprouting a new tail when you look at it, just like the Hydra’s heads. But, discovering a molecule that is involved in an ubiquitous process like synapse formation may provide a way to leave the tiger’s tail(s) alone and focus on the teeth. In the authors’ words:

“As a molecule involved in the formation of dense core vesicles and, further down, neurotransmitter secretion, MOCOS seems to act on the container rather than the content, on the vehicle rather than one of the transported components” (p. 1123).

The knowledge uncovered by this paper makes a very good piece of the ASDs puzzle. Maybe not a corner, but a good edge. Alright, even if it’s not an edge, at least it’s a crucial piece full of details, not one of those sky pieces.

Reference: Féron F, Gepner B, Lacassagne E, Stephan D, Mesnage B, Blanchard MP, Boulanger N, Tardif C, Devèze A, Rousseau S, Suzuki K, Izpisua Belmonte JC, Khrestchatisky M, Nivet E, & Erard-Garcia M (Sep 2016, Epub 4 Aug 2016). Olfactory stem cells reveal MOCOS as a new player in autism spectrum disorders. Molecular Psychiatry, 21(9):1215-1224. PMID: 26239292, DOI: 10.1038/mp.2015.106. ARTICLE | FREE FULLTEXT PDF

By Neuronicus, 31 August 2016

One parent’s gene better than the other’s

Not all people with the same bad genetic makeup that predisposes them to a particular disease go and develop that disease or, at any rate, not with the same severity and prognosis. The question is why? After all, they have the same genes…

Here comes a study that answers that very important question. Eloy et al. (2016) looked at the most common pediatric eye cancer (1 in 15,000) called retinoblastoma (Rb). In the hereditary form of this cancer, the disease occurs if the child carries mutant (i.e. bad) copies of the RB1 tumour suppressor gene located on chromosome 13 (13q14). These copies, called alleles, are inherited by the child from the mother or from the father. But some children with this genetic disadvantage do not develop Rb. They should, so why not?

The authors studied 57 families with Rb history. They took blood and tumour samples from the participants and then did a bunch of genetic tests: DNA, RNA, and methylation analyses.

They found out that when the RB1 gene is inherited from the mother, the child has only 9.7% chances of developing Rb, but when the gene is inherited from the father the child has only 67.5% chances of developing Rb.

The mechanism for this different outcomes may reside in the differential methylation of the gene. Methylation is a chemical process that suppresses the expression of a gene, meaning that less protein is produced from that gene. The maternal gene had less methylation, meaning that more protein was produced, which was able to offer some protection against the cancer. Seems counter-intuitive, you’d think less bad protein is a good thing, but there is a long and complicated explanation for that, which, in a very simplified form, posits that other events influence the function of the resultant protein.

Again, epigenetics seem to offer explanations for pesky genetic inheritance questions. Epigenetic processes, like DNA methylation, are modalities through which traits can be inherited that are not coded in the DNA itself.

RB - Copy

Reference: Eloy P, Dehainault C, Sefta M, Aerts I, Doz F, Cassoux N, Lumbroso le Rouic L, Stoppa-Lyonnet D, Radvanyi F, Millot GA, Gauthier-Villars M, & Houdayer C (29 Feb 2016). A Parent-of-Origin Effect Impacts the Phenotype in Low Penetrance Retinoblastoma Families Segregating the c.1981C>T/p.Arg661Trp Mutation of RB1. PLoS Genetics, 12(2):e1005888. eCollection 2016. PMID: 26925970, PMCID: PMC4771840, DOI: 10.1371/journal.pgen.1005888. ARTICLE | FREE FULLTEXT PDF

By Neuronicus, 24 July 2016