Milk-producing spider

In biology, organizing living things in categories is called taxonomy. Such categories are established based on shared characteristics of the members. These characteristics were usually visual attributes. For example, a red-footed booby (it’s a bird, silly!) is obviously different than a blue-footed booby, so we put them in different categories, which Aristotle called in Greek something like species.

Biological taxonomy is very useful, not only to provide countless hours of fight (both verbal and physical!) for biologists, but to inform us of all sorts of unexpected relationships between living things. These relationships, in turn, can give us insights into our own evolution, but also the evolution of things inimical to us, like diseases, and, perhaps, their cure. Also extremely important, it allows scientists from all over the world to have a common language, thus maximizing information sharing and minimizing misunderstandings.

148-who Am I - Copy

All well and good. And it was all well and good since Carl Linnaeus introduced his famous taxonomy system in the 18th Century, the one we still use today with species, genus, family, order, and kingdom. Then we figured out how to map the DNAs of things around us and this information threw out the window a lot of Linnean classifications. Because it turns out that some things that look similar are not genetically similar; likewise, some living things that we thought are very different from one another, turned out that, genetically speaking, they are not so different.

You will say, then, alright, out with visual taxonomy, in with phylogenetic taxonomy. This would be absolutely peachy for a minority of organisms of the planet, like animals and plants, but a nightmare in the more promiscuous organisms who have no problem swapping bits of DNA back and forth, like some bacteria, so you don’t know anymore who’s who. And don’t even get me started on the viruses which we are still trying to figure out whether or not they are alive in the first place.

When I grew up there were 5 regna or kingdoms in our tree of life – Monera, Protista, Fungi, Plantae, Animalia – each with very distinctive characteristics. Likewise, the class Mammalia from the Animal Kingdom was characterized by the females feeding their offspring with milk from mammary glands. Period. No confusion. But now I have no idea (nor do many other biologists, rest assured) how many domains or kingdoms or empires we have, nor even what the definition of a species is anymore.

As if that’s not enough, even those Linnean characteristics that we thought set in stone are amenable to change. Which is good, shows the progress of science. But I didn’t think that something like the definition of mammal would change. Mammals are organisms whose females feed their offspring with milk from mammary glands, as I vouchsafed above. Pretty straightforward. And not spiders. Let me be clear on this: spiders did not feature in my – or anyone’s! – definition of mammals.

Until Chen et al. (2018) published their weird article a couple of weeks ago. The abstract is free for all to see and states that the females of a jumping spider species feed their young with milk secreted by their body until the age of subadulthood. Mothers continue to offer parental care past the maturity threshold. The milk is necessary for the spiderlings because without it they die. That’s all.

I read the whole paper since it was only 4 pages of it and here are some more details about their discovery. The species of spider they looked at is Toxeus magnus, a jumping spider that looks like an ant. The mother produces milk from her epigastric furrow and deposits it on the nest floor and walls from where the spiderlings ingest it (0-7 days). After the first week of this, the spiderlings suck the milk direct from the mother’s body and continue to do so for the next two weeks (7-20 days) when they start leaving the nest and forage for themselves. But they return and for the next period (20-40 days) they get their food both from the mother’s milk and from independent foraging. Spiderlings get weaned by day 40, but they still come home to sleep at night. At day 52 they are officially considered adults. Interestingly, “although the mother apparently treated all juveniles the same, only daughters were allowed to return to the breeding nest after sexual maturity. Adult sons were attacked if they tried to return. This may reduce inbreeding depression, which is considered to be a major selective agent for the evolution of mating systems (p. 1053).”

During all this time, including during the emergence into adulthood of the offsprings, the mother also supplied house maintenance, carrying out her children’s exuviae (shed exoskeletons) and repairing the nest.

The authors then did a series of experiments to see what role does the nursing and other maternal care at different stages play in the fitness and survival of the offsprings. Blocking the mother’s milk production with correction fluid immediately after hatching killed all the spiderlings, showing that they are completely dependent on the mother’s milk. Removing the mother after the spiderlings start foraging (day 20) drastically reduces survivorship and body size, showing that mother’s care is essential for her offsprings’ success. Moreover, the mother taking care of the nest and keeping it clean reduced the occurrence of parasite infections on the juveniles.

The authors analyzed the milk and it’s highly nutritious: “spider milk total sugar content was 2.0 mg/ml, total fat 5.3 mg/ml, and total protein 123.9 mg/ml, with the protein content around four times that of cow’s milk (p. 1053)”.

Speechless I am. Good for the spider, I guess. Spider milk will have exorbitant costs (Apparently, a slight finger pressure on the milk-secreting region makes the mother spider secret the milk, not at all unlike the human mother). Spiderlings die without the mother’s milk. Responsible farming? Spider milker qualifications? I’m gonna lay down, I got a headache.

148 spider milk - Copy

REFERENCE: Chen Z, Corlett RT, Jiao X, Liu SJ, Charles-Dominique T, Zhang S, Li H, Lai R, Long C, & Quan RC (30 Nov. 2018). Prolonged milk provisioning in a jumping spider. Science, 362(6418):1052-1055. PMID: 30498127, DOI: 10.1126/science.aat3692. ARTICLE | Supplemental info (check out the videos)

By Neuronicus, 13 December 2018

Raising a child costs 13 million calories

That’s right. Somebody actually did the math on that. Kaplan in 1994, to be exact.

The anthropologist and his colleague, Kate Kopischke, looked at how three semi-isolated populations from South America live. Between September 1988 and May 1989, the researchers analyzed several variables meant to shed light mainly on fertility rate and wealth flow. They measured the amount of time spent taking care of children. They estimated the best time to have a second child. They weighed the food of these communities. And then they estimated the caloric intake and expenditure per day per individual.

Human children are unable to provision for themselves until about the age of 18. So most of their caloric intake requirements are provided by their parents. Long story (39 pages) short, Kaplan (1994) concluded that a child relies on 13 million calories provided by the adults. Granted, these are mostly hunter-gatherer communities, so the number may be a bit off from your average American child. The question is: which way? Do American kids “cost” more or less?

143 13 mil calories - Copy

P.S. I was reading a paper, Kohl (2018), in the last week’s issue of Science that quoted this number, 13 million. When I went to the cited source, Hrdy (2016), that one was citing yet another one, the above-mentioned Kaplan (1994) paper. Luckily for Kohl, Hrdy cited Kaplan correctly. But I must tell you from my own experience, half of the time when people cite other people citing other people citing original research, they are wrong. Meaning that somewhere in the chain somebody got it wrong or twisted the original research finding for their purposes. Half of the time, I tell you. People don’t go for the original material because it can be a hassle to dig it out, or it’s hard to read, or because citing a more recent paper looks better in the review process. But that comes to the risk of being flat wrong. The moral: always, always, go for the source material.

P.P.S. To be clear, I’m not accusing Kohl of not reading Kaplan because accusing an academic of citing without reading or being unfamiliar with seminal research in their field (that is, seminal in somebody else’s opinion) is a tremendous insult not be wielded lightly by bystanders but to be viciously used only for in-house fights on a regular basis. No. I’m saying that Kohl got that number second-hand and that’s frowned upon. The moral: always, always, go for the source material. I can’t emphasize this enough.

P.P.P..S. Ah, forget it. P.S. 3. Upon reading my blog, my significant other’s first question was: “Well, how much is that in potatoes?” I had to do the math on a Post-It and the answer is: 50,288 large skinless potatoes, boiled without salt. That’s 15,116 Kg of potatoes, more than 15 metric tones. Here you go. Happy now? Why are we talking about potatoes?! No, I don’t know how many potatoes would fit into a house. Jeez!

REFERENCE: Kaplan, H. (Dec. 1994). Evolutionary and Wealth Flows Theories of Fertility: Empirical Tests and New Models. Population and Development Review, Vol. 20, No. 4, pp. 753-791. DOI: 10.2307/2137661. ARTICLE

By Neuronicus, 22 October 2018

The Mom Brain

Recently, I read an opinion titled When I Became A Mother, Feminism Let Me Down. The gist of it was that some feminists, while empowering women and girls to be anything they want to be and to do anything a man or a boy does, they fail in uplifting the motherhood aspect of a woman’s life, should she choose to become a mother. In other words, even (or especially, in some cases) feminists look down on the women who chose to switch from a paid job and professional career to an unpaid stay-at-home mom career, as if being a mother is somehow beneath what a woman can be and can achieve. As if raising the next generation of humans to be rational, informed, well-behaved social actors instead of ignorant brutal egomaniacs is a trifling matter, not to be compared with the responsibilities and struggles of a CEO position.

Patriarchy notwithstanding, a woman can do anything a man can. And more. The ‘more’ refers to, naturally, motherhood. Evidently, fatherhood is also a thing. But the changes that happen in a mother’s brain and body during pregnancy, breastfeeding, and postpartum periods are significantly more profound than whatever happens to the most loving and caring and involved father.

Kim (2016) bundled some of these changes in a nice review, showing how these drastic and dramatic alterations actually have an adaptive function, preparing the mother for parenting. Equally important, some of the brain plasticity is permanent. The body might spring back into shape if the mother is young or puts into it a devilishly large amount of effort, but some brain changes are there to stay. Not all, though.

One of the most pervasive findings in motherhood studies is that hormones whose production is increased during pregnancy and postpartum, like oxytocin and dopamine, sensitize the fear circuit in the brain. During the second trimester of pregnancy and particularly during the third, expectant mothers start to be hypervigilent and hypersensitive to threats and to angry faces. A higher anxiety state is characterized, among other things, by preferentially scanning for threats and other bad stuff. Threats mean anything from the improbable tiger to the 1 in a million chance for the baby to be dropped by grandma to the slightly warmer forehead or the weirdly colored poopy diaper. The sensitization of the fear circuit, out of which the amygdala is an essential part, is adaptive because it makes the mother more likely to not miss or ignore her baby’s cry, thus attending to his or her needs. Also, attention to potential threats is conducive to a better protection of the helpless infant from real dangers. This hypersensitivity usually lasts 6 to 12 months after childbirth, but it can last lifetime in females already predisposed to anxiety or exposed to more stressful events than average.

Many new mothers worry if they will be able to love their child as they don’t feel this all-consuming love other women rave about pre- or during pregnancy. Rest assured ladies, nature has your back. And your baby’s. Because as soon as you give birth, dopamine and oxytocin flood the body and the brain and in so doing they modify the reward motivational circuit, making new mothers literally obsessed with their newborn. The method of giving birth is inconsequential, as no differences in attachment have been noted (this is from a different study). Do not mess with mother’s love! It’s hardwired.

Another change happens to the brain structures underlying social information processing, like the insula or fusiform gyrus, making mothers more adept at self-motoring, reflection, and empathy. Which is a rapid transformation, without which a mother may be less accurate in understanding the needs, mental state, and social cues of the very undeveloped ball of snot and barf that is the human infant (I said that affectionately, I promise).

In order to deal with all these internal changes and the external pressures of being a new mom the brain has to put up some coping mechanisms. (Did you know, non-parents, that for the first months of their newborn lives, the mothers who breastfeed must do so at least every 4 hours? Can you imagine how berserk with sleep deprivation you would be after 4 months without a single night of full sleep but only catnaps?). Some would be surprised to find out – not mothers, though, I’m sure – that “new mothers exhibit enhanced neural activation in the emotion regulation circuit including the anterior cingulate cortex, and the medial and lateral prefrontal cortex” (p. 50). Which means that new moms are actually better at controlling their emotions, particularly at regulating negative emotional reactions. Shocking, eh?

140 mom brain1 - Copy

Finally, it appears that very few parts of the brain are spared from this overhaul as the entire brain of the mother is first reduced in size and then it grows back, reorganized. Yeah, isn’t that weird? During pregnancy the brain shrinks, being at its lowest during childbirth and then starts to grow again, reaching its pre-pregnancy size 6 months after childbirth! And when it’s back, it’s different. The brain parts heavily involved in parenting, like the amygdala involved in the anxiety, the insula and superior temporal gyrus involved in social information processing and the anterior cingulate gyrus involved in emotional regulation, all these show increased gray matter volume. And many other brain structures that I didn’t list. One brain structure is rarely involved only in one thing so the question is (well, one of them) what else is changed about the mothers, in addition to their increased ability to parent?

I need to add a note here: the changes that Kim (2016) talks about are averaged. That means some women get changed more, some less. There is variability in plasticity, which should be a pleonasm. There is also variability in the human population, as any mother attending a school parents’ night-out can attest. Some mothers are paranoid with fear and overprotective, others are more laissez faire when it comes to eating from the floor.

But SOME changes do occur in all mothers’ brains and bodies. For example, all new mothers exhibit a heightened attention to threats and subsequent raised levels of anxiety. But when does heightened attention to threats become debilitating anxiety? Thanks to more understanding and tolerance about these changes, more and more women feel more comfortable reporting negative feelings after childbirth so that now we know that postpartum depression, which happens to 60 – 80% of mothers, is a serious matter. A serious matter that needs serious attention from both professionals and the immediate social circle of the mother, both for her sake as well as her infant’s. Don’t get me wrong, we – both males and females – still have a long way ahead of us to scientifically understand and to socially accept the mother brain, but these studies are a great start. They acknowledge what all mothers know: that they are different after childbirth than the way they were before. Now we have to figure out how are they different and what can we do to make everyone’s lives better.

Kim (2016) is an OK review, a real easy read, I recommend it to the non-specialists wholeheartedly; you just have to skip the name of the brain parts and the rest is pretty clear. It is also a very short review, which will help with reader fatigue. The caveat of that is that it doesn’t include a whole lotta studies, nor does it go in detail on the implications of what the handful cited have found, but you’ll get the gist of it. There is a vastly more thorough literature if one would include animal studies that the author, curiously, did not include. I know that a mouse is not a chimp is not a human, but all three of us are mammals, and social mammals at that. Surely, there is enough biological overlap so extrapolations are warranted, even if partially. Nevertheless, it’s a good start for those who want to know a bit about the changes motherhood does to the brain, behavior, thoughts, and feelings.

Corroborated with what I already know about the neuroscience of maternity, my favourite takeaway is this: new moms are not crazy. They can’t help most of these changes. It’s biology, you see. So go easy on new moms. Moms, also go easy on yourselves and know that, whether they want to share or not, the other moms probably go through the same stuff. You’re not alone. And if that overactive threat circuit gives you problems, i.e. you feel overwhelmed, it’s OK to ask for help. And if you don’t get it, ask for it again and again until you do. That takes courage, that’s empowerment.

P. S. The paper doesn’t look like it’s peer-reviewed. Yes, I know the peer-reviewing publication system is flawed, I’ve been on the receiving end of it myself, but it’s been drilled into my skull that it’s important, flawed as it is, so I thought to mention it.

REFERENCE: Kim, P. (Sept. 2016). Human Maternal Brain Plasticity: Adaptation to Parenting, New Directions for Child and Adolescent Development, (153): 47–58. PMCID: PMC5667351, doi: 10.1002/cad.20168. ARTICLE | FREE FULLTEXT PDF

By Neuronicus, 28 September 2018

The FIRSTS: Dinosaurs and reputation (1842)

‘Dinosaur’ is a common noun in most languages of the Globe and, in its weak sense, it means “extinct huge reptile-like animal that lived a long-time ago”. The word has been in usage for so long that it can be used also for describing something “impractically large, out-of-date, or obsolete” (Merriam-Webster dictionary). “Dinosaur” is a composite of two ancient Greek words (“deinos”, “sauros”) and it means “terrible lizard”.

But, it turns out that the word hasn’t been in usage for so long, just for a mere 175 years. Sir Richard Owen, a paleontologist that dabbled in many disciplines, coined the term in 1842. Owen introduced the taxon Dinosauria as if it was always called thus, no fuss: “The present and concluding part of the Report on British Fossil Reptiles contains an account of the remains of the Crocodilian, Dinosaurian, Lacertian, Pterodactylian, Chelonian, Ophidian and Batrachian reptiles.” (p. 60). Only later in the Report does he tell us his paleontological reasons for the baptism, namely some anatomical features that distinguish dinosaurs from crocodiles and other reptiles.

“…The combination of such characters, some, as the sacral ones, altogether peculiar among Reptiles, others borrowed, as it were, from groups now distinct from each other, and all manifested by creatures far surpassing in size the largest of existing reptiles, will, it is presumed, be deemed sufficient ground for establishing a distinct tribe or sub-order of Saurian Reptiles, for which I would propose the name of Dinosauria.” (p.103)

At the time he was presenting this report to the British Association for the Advancement of Science, other giants of biology were running around the same halls, like Charles Darwin and Thomas Henry Huxley. Indisputably, Owen had a keen observational eye and a strong background in comparative anatomy that resulted in hundreds of published works, some of them excellent. That, in addition to establishing the British Museum of Natural History.

Therefore, Owen had reasons to be proud of his accomplishments and secure in his influence and legacy, and yet his contemporaries tell us that he was an absolutely vicious man, spiteful to the point of obsession, vengeful and extremely jealous of other people’s work. Apparently, he would steal the work of the younger people around him, never give credit, lie and cheat at every opportunity, and even write lengthy anonymous letters to various printed media to denigrate his contemporaries. He seemed to love his natal city of Lancaster and his family though (Wessels & Taylor, 2015).

121Richard-owen _PD
Sir Richard Owen (20 July 1804 – 18 December 1892). PD, courtesy of Wikipedia.

Owen had a particular hate for Darwin. They had been close friends for 20 years and then Darwin published the “Origin of Species”. The book quickly became widely read and talked about and then poof: vitriol and hate. Darwin himself said the only reason he could think of for Owen’s hatred was the popularity of the book.

Various biographies and monographers seem to agree on his unpleasant personality (see his entry in The Telegraph,, Encylopaedia Britannica, BBC). On a side note, should you be concerned about your legacy and have the means to persuade The Times to write you an obituary, by all means, do so. In all the 8 pages of obituary written in 1896 you will not find a single blemish on the portrait of Sir Richard Owen.

This makes me ponder on the judgement of history based not on your work, but on your personality. As I said, the man contributed to science in more ways than just naming the dinosaur and having spats with Darwin. And yet it seems that his accomplishments are somewhat diminished by the way he treated others.

This reminded me of Nicolae Constantin Paulescu, a Romanian scientist who discovered insulin in 1916 (published in 1921). Yes, yes, I know all about the controversy with the Canadians that extracted and purified the insulin in 1922 and got the Nobel for it in 1923. Paulescu did the same, even if Paulescu’s “pancreatic extract” from a few years earlier was insufficiently purified; it still successfully lowered the glicemic index in dogs. He even obtained a patent for the “fabrication of pancrein” (his name for insulin, because he obtained it from the pancreas) in April 1922 from the Romanian Government (patent no. 6255). The Canadian team was aware of his work, but because it was published in French, they had a poor translation and they misunderstood his findings, so, technically, they didn’t steal anything. Or so they say. Feel free to feed the conspiracy mill. I personally don’t know, I haven’t looked at the original work to form an opinion because it is in French and my French is non-existent.

Annnywaaaay, whether or not Paulescu was the first in discovering the insulin is debatable, but few doubt that he should have shared the Nobel at least.

Rumor has it that Paulescu did not share the Nobel because he was a devout Nazi. His antisemitic writings are remarkably horrifying, even by the standards of the extreme right. That’s also why you won’t hear about him in medical textbooks or at various diabetes associations and gatherings. Yet millions of people worldwide may be alive today because of his work, at least partly.

How should we remember? Just the discoveries and accomplishments with no reference to the people behind them? Is remembering the same as honoring? “Clara cells” were lung cells discovered by the infamous Nazi anatomist Max Clara by dissecting prisoners without consent. They were renamed by the lung community “club cells” in 2013. We cannot get rid of the discovery, but we can rename the cells, so it doesn’t look like we honor him. I completely understand that. And yet I also don’t want to lose important pieces of history because of the atrocities (in the case of Nazis) or unsavory behavior (in the case of Owen) committed by our predecessors. I understand why the International Federation of Diabetes does not wish to give awards in the name of Paulescu or have a Special Paulescu lecture. Perhaps the Romanians should take down his busts and statues, too. But I don’t understand why (medical) history books should exclude him.

In other words, don’t honor the unsavories of history, but don’t forget them either. You never know what we – or the future generations – may learn by looking back at them and their actions.

123 - Copy.jpg

By Neuronicus, 19 October 2017


1) Owen, R (1842). “Report on British Fossil Reptiles”. Part II. Report of the Eleventh Meeting of the British Association for the Advancement of Science; Held at Plymouth in July 1841. London: John Murray. p. 60–204. Google Books Fulltext 

2) “Eminent persons: Biographies reprinted from the Times, Vol V, 1891–1892 – Sir Richard Owen (Obituary)” (1896). Macmillan & Co., p. 291–299. Google Books Fulltext

3) Wessels Q & Taylor AM (28 Oct 2015). Anecdotes to the life and times of Sir Richard Owen (1804-1892) in Lancaster. Journal of Medical Biography. pii: 0967772015608053. PMID: 26512064, DOI: 10.1177/0967772015608053. ARTICLE

Midichlorians, midichloria, and mitochondria

Nathan Lo is an evolutionary biologist interested in creepy crawlies, i.e. arthropods. Well, he’s Australian, so I guess that comes with the territory (see what I did there?). While postdoc’ing, he and his colleagues published a paper (Sassera et al., 2006) that would seem boring for anybody without an interest in taxonomy, a truly under-appreciated field.

The paper describes a bacterium that is a parasite for the mitochondria of a tick species called Ixodes ricinus, the nasty bugger responsible for Lyme disease. The authors obtained a female tick from Berlin, Germany and let it feed on a hamster until it laid eggs. By using genetic sequencing (you can use kits these days to extract the DNA, do PCR, gels and cloning, pretty much everything), electron microscopy (real powerful microscopes) and phylogenetic analysis (using computer softwares to see how closely related some species are) the authors came to the conclusion that this parasite they were working on is a new species. So they named it. And below is the full account of the naming, from the horse’s mouth, as it were:

“In accordance with the guidelines of the International Committee of Systematic Bacteriology, unculturable bacteria should be classified as Candidatus (Murray & Stackebrandt, 1995). Thus we propose the name ‘Candidatus Midichloria mitochondrii’ for the novel bacterium. The genus name Midichloria (mi.di.chlo′ria. N.L. fem. n.) is derived from the midichlorians, organisms within the fictional Star Wars universe. Midichlorians are microscopic symbionts that reside within the cells of living things and ‘‘communicate with the Force’’. Star Wars creator George Lucas stated that the idea of the midichlorians is based on endosymbiotic theory. The word ‘midichlorian’ appears to be a blend of the words mitochondrion and chloroplast. The specific epithet, mitochondrii (′chon.drii. N.L. n. mitochondrium -i a mitochondrion; N.L. gen. n. mitochondrii of a mitochondrion), refers to the unique intramitochondrial lifestyle of this bacterium. ‘Candidatus M. mitochondrii’ belongs to the phylum Proteobacteria, to the class Alphaproteobacteria and to the order Rickettsiales. ‘Candidatus M. mitochondrii’ is assigned on the basis of the 16S rRNA (AJ566640) and gyrB gene sequences (AM159536)” (p. 2539).

George Lucas gave his blessing to the Christening (of course he did).

119-midi - Copy1 - Copy.jpg

Acknowledgements: Thanks go to Ms. BBD who prevented me from making a fool of myself (this time!) on the social media by pointing out to me that midichloria are real and that they are a mitochondrial parasite.

REFERENCE: Sassera D, Beninati T, Bandi C, Bouman EA, Sacchi L, Fabbi M, Lo N. (Nov. 2006). ‘Candidatus Midichloria mitochondrii’, an endosymbiont of the tick Ixodes ricinus with a unique intramitochondrial lifestyle. International Journal of Systematic and Evolutionary Microbiology, 56(Pt 11): 2535-2540. PMID: 17082386, DOI: 10.1099/ijs.0.64386-0. ABSTRACT | FREE FULLTEXT PDF 

By Neuronicus, 29 July 2017

The oldest known anatomically modern humans in Europe

A couple of days ago, on December 1st, was the National Day of Romania, a small country in the South-East of Europe. In its honor, I dug out a paper that shows that some of the earliest known modern humans in Europe were also… dug out there.

Trinkaus et al. (2003) investigated the mandible of an individual found in 2002 by a Romanian speological expedition in Peștera cu Oase (the Cave with Bones), one of the caves in the SouthWest of the country, not far from where Danube meets the Carpathians.

First the authors did a lot of very fine measurement of various aspects of the jaw, including the five teeth, and then compared them with those found in other early humans and Neanderthals. The morphological features place the Oase 1 individual as an early modern human with some Neanderthal features. The accelerator mass spectrometry radiocarbon (14C) direct dating makes him the oldest early modern human discovered to that date in Europe; he’s 34,000–36,000 year old. I’m assuming is a he for no particular reason; the paper doesn’t specify anywhere whether they know the jaw owner’s gender and age. A later paper (Fu et al., 2015) says Oase 1 is even older: 37,000–42,000-year-old.

After this paper it seemed to be a race to see what country can boast to have the oldest human remains on its territory. Italy and UK successfully reassessed their own previous findings thusly: UK has a human maxilla that was incorrectly dated in 1989 but new dating makes it 44,200–39,000 year old, carefully titling their paper “The earliest evidence for anatomically modern humans in northwestern Europe” (Higham et al., 2011) while Italy’s remains that they thought for decades to be Neanderthal turned out to be 45,000-43,000 years old humans, making “the Cavallo human remains […] the oldest known European anatomically modern humans” (Benmazzi et al., 2011).

I wonder what prompted the sudden rush in reassessing the old untouched-for-decades fossils… Probably good old fashioned national pride. Fair enough. Surely it cannot have anything to do with the disdain publicly expressed by some Western Europe towards Eastern Europe, can it? Surely scientists are more open minded than some petty xenophobes, right?

Well, the above thought wouldn’t have even crossed my mind, nor would I have noticed that the Romanians’ discovery has been published in PNAS and the others in Nature, had it not been for the Fu et al. (2015) paper, also published in Nature. This paper does a genetic analysis of the Oase 1 individual and through some statistical inferences that I will not pretend to fully understand they arrive to two conclusions. First, Oase 1 had a “Neanderthal ancestor as recently as four to six generations back”. OK. Proof of interbreeding, nothing new here. But the second conclusion I will quote in full: “However, the Oase individual does not share more alleles with later Europeans than with East Asians, suggesting that the Oase population did not contribute substantially to later humans in Europe.”

Now you don’t need to know much about statistics or about basic logic either to know that from 1 (one) instance alone you cannot generalize to a whole population. That particular individual from the Oase population hasn’t contributed to later humans in Europe, NOT the entire population. Of course it is possible that that is the case, but you cannot scientifically draw that conclusion from one instance alone! This is in the abstract, so everybody can see this, but I got access to the whole paper, which I have read in the hopes against hope that maybe I’m missing something. Nope. The authors did not investigate any additional DNA and they reiterate that the Oase population did not contribute to modern-day Europeans. So it’s not a type-O. From the many questions that are crowding to get out like ‘How did it get past reviewers?’, ‘Why was it published in Nature (interesting paper, but not that interesting, we knew about interbreeding so what makes it so new and exciting)?’, the one that begs to be asked the most is: ‘Why would they say this, when stating the same thing about the Oase 1 individual instead about the Oase population wouldn’t have diminished their paper in any way?’ .

I must admit that I am getting a little paranoid in my older age. But with all the hate that seems to come out and about these days EVERYWHERE towards everything that is “not like me” and “I don’t want it to be like me”, one cannot but wonder… Who knows, maybe it is really just as simple as an overlooked mistake or some harmless national pride so all is good and life goes on, especially since the authors of all four papers discussed above are from various countries and institutions all across the Globe. Should that be the case, I offer my general apologies for suspecting darker motives behind these papers, but I’m not holding my breath.



1) Trinkaus E, Moldovan O, Milota S, Bîlgăr A, Sarcina L, Athreya S, Bailey SE, Rodrigo R, Mircea G, Higham T, Ramsey CB, & van der Plicht J. (30 Sep 2003, Epub 22 Sep 2003). An early modern human from the Peştera cu Oase, Romania. Proceedings of the National Academy of Sciences U S A,  100(20):11231-11236. PMID: 14504393, PMCID: PMC208740, DOI: 10.1073/pnas.2035108100. ARTICLE  | FREE FULLTEXT PDF

 2) Higham T, Compton T, Stringer C, Jacobi R, Shapiro B, Trinkaus E, Chandler B, Gröning F, Collins C, Hillson S, O’Higgins P, FitzGerald C, & Fagan M. (2 Nov 2011). The earliest evidence for anatomically modern humans in northwestern Europe. Nature. 479(7374):521-4. PMID: 22048314, DOI: 10.1038/nature10484. ARTICLE | FULLTEXT PDF via ResearchGate

3) Benazzi S, Douka K, Fornai C, Bauer CC, Kullmer O, Svoboda J, Pap I, Mallegni F, Bayle P, Coquerelle M, Condemi S, Ronchitelli A, Harvati K, & Weber GW. (2 Nov 2011). Early dispersal of modern humans in Europe and implications for Neanderthal behaviour. Nature, 479(7374):525-8. PMID: 22048311, DOI: 10.1038/nature10617. ARTICLE | FULLTEXT PDF via ResearchGate

4) Fu Q, Hajdinjak M, Moldovan OT, Constantin S, Mallick S, Skoglund P, Patterson N, Rohland N, Lazaridis I, Nickel B, Viola B, Prüfer K, Meyer M, Kelso J, Reich D, & Pääbo S. (13 Aug 2015, Epub 22 Jun 2015). An early modern human from Romania with a recent Neanderthal ancestor. Nature. 524(7564):216-9. PMID: 26098372, PMCID: PMC4537386, DOI:10.1038/nature14558. ARTICLE | FREE FULLTEXT PDF

By Neuronicus, 3 December 2016






Pic of the Day: Neil on teaching creationism

Dr. deGrasse Tyson’s picture is from Wikimedia released under PD and the quote is from a “Letter to the Editor” of New York Times retrieved from the Hayden Planetarium website on Nov. 2, 2016.

Lucy’s 9 vertebrae are actually 8

Lucy. Left: picture of the real skeleton. Middle and Right: reconstructions. Courtesy of Wikipedia

As Google reminded us, today is the 41st anniversary of the finding of Lucy, the first discovered member of the species Australopithecus afarensis. Lucy lived in Ethiopia about 3.2 million years ago and the most extraordinary fact about her is that her fossil represents the first evidence of bipedalism in a hominin (we are also hominins).

Lucy is one “missing link” (not ‘missing’ anymore, obviously) between the common ancestor of humans and chimpanzees and humans because she has ape-like features (jaw, forehead, long arms, small cranium) and human-like features (knee, ankle, lumbar curve, pelvic bones) and walked upright.

Meyer et al. (2015) wanted to do a comprehensive reconstruction of Lucy for display at the American Museum of Natural History in New York. During this work they noticed that one vertebrae of the total of nine found is kindda small compared to the other ones. So they set to measure vertebrae form all sorts of other species, alive and extinct, and after some factor analysis they concluded that out of Lucy’s nine found vertebrae, the little one is not actually hers, but belongs to a different species from the genus Theropithecus (a baboon ancestor).

This finding is functionally uninformative and their “work does not refute previous work on Lucy or its importance for human evolution, but rather highlights the importance of studying original fossils, as well as the efficacy of the scientific method.” In other words, give the poor anthropologists not reconstructions but the original fossils to work with (most people worked with Lucy’s reconstructions which missed some details, thus allowing this pesky vertebra to remain miss-cataloged for 40 years).

The new alignment from doi: 10.1016/j.jhevol.2015.05.007

This is the first paper of pure anthropology that I have read in full and let me tell you that I found a lot of curious things, unrelated to Lucy. Like, for example, from an anthropologist’s point of view, an adult is someone with the third molar completely erupted. We should then look into the people’s mouths before giving them the keys to the wine cellar, because some 21-year olds are definitely not adults. Also, instead of a medical doctor, get an anthropologist to teach anatomy, because oh boy do these people know their skeletons! Here is an excerpt from the Methods section: “The overall size of the A.L. 288-1am partial vertebra was calculated as the geometric mean of six linear dimensions: lamina superoinferior height and dorsoventral thickness, pars interarticularis width, interarticular facet height, and superior and inferior articular interfacet maximum transverse widths. The pars interarticularis geometric mean includes three variables from the pars interarticularis: lamina superoinferior height and dorsoventral thickness, and pars interarticularis width” (p. 175).

All in all, nice!

Reference: Meyer MR, Williams SA, Smith MP, Sawyer GJ (August 2015, Epub 6 Jun 2015). Lucy’s back: Reassessment of fossils associated with the A.L. 288-1 vertebral column. Journal of Human Evolution, 85:174-80. doi: 10.1016/j.jhevol.2015.05.007. Article | FREE FULLTEXT PDF

By Neuronicus, 24 November 2015


Viruses are as alive as crystals

Crystal of ultrapure bismuth. Photo credit: Intangir (public domain)
Crystal of ultrapure bismuth. Credit: Intangir. License: PD

The biology hype of the week is the notion that viruses are alive. Well, the true answer to that is… maybe. But that’s not catchy enough for headlines, is it?

Let’s start, as usual, with the source. Nasir & Caetano-Anollés (2015) published a paper where they did a lot of computer sniffing in existing proteomics databases to find out that viruses express a few dozen unique protein folds and they share several hundred more with cells. In other words, some of the viral proteins are unique. Using this information and some neat math they managed to calculate an evolutionary tree, that is, they classified the viruses via genetic relatedness to themselves and living organisms. That’s the strictu sensu of the term “tree of life”. From this taxonomy exercise, the authors speculate about when and how viruses might have appeared. They concluded that viruses appeared as RNA chunks spat out of cells. To give you a little background, there are two main hypotheses about the origin of viruses: appeared before cells as free floating RNA, or they were pieces of RNA that have been kicked out of a living cell, so after the evolution of cells. All well and good, I’m not going to open that can of worms, which hypothesis is more supported from data and so on.

Now, and this is the contentious part, verbatim:

“Here, we put forth the bold conjecture of a universal tree of life (uToL) that describes the evolution of cellular and viral proteomes. […]. Thus, viruses should be considered “living” organisms that simply survive by means of an atypical reproduction method that requires infecting a cell” (p. 18).

It’s their opinion. Not a fact. Not – and this is important – a direct consequence of their awesome taxonomy exercise. For a formal definition, a conjecture is an opinion or conclusion formed on the basis of incomplete information (Oxford Dictionary).

Don’t get me wrong, I think this is a neat paper, and, frankly, I don’t have a horse in this race: I don’t care whether viruses are alive or not. But I do care to distinguish between fact and opinion, an intellectual exercise that seem to have eluded the science websites and science popularization zines and e-zines like EurekaAlert, IFLS, ScienceAlert, Gizmodo, Daily Mail, Wired, Popular Science, R & D Magazine, Laboratory Equipment, and many others, who ran titles saying “Viruses are alive” in just so many words. Note that even the authors themselves put the word “living” between quotes. Know the difference between opinion (that is, we think that because x makes y, maybe x is blue) and a scientific fact (x makes y, y makes z, therefore x must make z and we know that not only because it’s logical, but also because no other wretched letter wants to make z, believe us we tried, we made sure z is where we put it, because we put dye on it, we measured it, chopped it, looked at it with 5 different instruments, and we cannot make z without x though a poor grad student tried and tried in vain, we even modeled z, and yes, it is made by x, otherwise known as we eliminated all other testable bloody possibilities that we could think of. Unless q makes z in humans, but we can’t measure that. Or r makes z under Jovian gravity, but we didn’t get a grant for that…. get my drift what a scientific fact is?).

Now, rant is not over. The authors argue that viruses have a sort of metabolism and they replicate, so they meet the requirements for being classified as alive. For the sake of the argument, I can posit that either these two conditions are not enough for something to be considered alive, or we have then to conclude that cave crystals are also alive. Crystals only grow in the appropriate environment of a saturated solution and bits shattered off from them go into an inert mode waiting for appropriate conditions. Crystal growth can even be looked at as a sort of metabolism. So, if they are willing to characterize crystal growth as somewhere on the continuous scale of life, viruses can be there as well. Using their analogy, the living, metabolically active form for crystals is when they are growing in a saturated solution; and bits breaking off or the bulk waiting for solution conditions to change is just an atypical reproductive scheme. It even gets more interesting with some of the more modern more complicated crystal growth theories with preassembly into nanocrystals, editing or incorporating defects, etc. Ok, I’m getting tired and I made my point anyway. Rant over. Happy debating!

Reference: Nasir, A. & Caetano-Anollés, G. (25 September 2015). A phylogenomic data-driven exploration of viral origins and evolution. Science Advances, 1(8): 1-24. DOI: 10.1126/sciadv.1500527. Article | FREE PDF

by Neuronicus, 29 September 2015