Aging and its 11 hippocampal genes

Aging is being quite extensively studied these days and here is another advance in the field. Pardo et al. (2017) looked at what happens in the hippocampus of 2-months old (young) and 28-months old (old) female rats. Hippocampus is a seahorse shaped structure no more than 7 cm in length and 4 g in weight situated at the level of your temples, deep in the brain, and absolutely necessary for memory.

First the researchers tested the rats in a classical maze test (Barnes maze) designed to assess their spatial memory performance. Not surprisingly, the old performed worse than the young.

Then, they dissected the hippocampi and looked at neurogenesis and they saw that the young rats had more newborn neurons than the old. Also, the old rats had more reactive microglia, a sign of inflammation. Microglia are small cells in the brain that are not neurons but serve very important functions.

After that, the researchers looked at the hippocampal transcriptome, meaning they looked at what proteins are being expressed there (I know, transcription is not translation, but the general assumption of transcriptome studies is that the amount of protein X corresponds to the amount of the RNA X). They found 210 genes that were differentially expressed in the old, 81 were upregulated and 129 were downregulated. Most of these genes are to be found in human too, 170 to be exact.

But after looking at male versus female data, at human and mouse aging data, the authors came up with 11 genes that are de-regulated (7 up- and 4 down-) in the aging hippocampus, regardless of species or gender. These genes are involved in the immune response to inflammation. More detailed, immune system activates microglia, which stays activated and this “prolonged microglial activation leads to the release of pro-inflammatory cytokines that exacerbate neuroinflammation, contributing to neuronal loss and impairment of cognitive function” (p. 17). Moreover, these 11 genes have been associated with neurodegenerative diseases and brain cancers.

112hc-copy

These are the 11 genes: C3 (up), Cd74  (up), Cd4 (up), Gpr183 (up), Clec7a (up), Gpr34 (down), Gapt (down), Itgam (down), Itgb2 (up), Tyrobp (up), Pld4 (down).”Up” and “down” indicate the direction of deregulation: upregulation or downregulation.

I wish the above sentence was as explicitly stated in the paper as I wrote it so I don’t have to comb through their supplemental Excel files to figure it out. Other than that, good paper, good work. Gets us closer to unraveling and maybe undoing some of the burdens of aging, because, as the actress Bette Davis said, “growing old isn’t for the sissies”.

Reference: Pardo J, Abba MC, Lacunza E, Francelle L, Morel GR, Outeiro TF, Goya RG. (13 Jan 2017, Epub ahead of print). Identification of a conserved gene signature associated with an exacerbated inflammatory environment in the hippocampus of aging rats. Hippocampus, doi: 10.1002/hipo.22703. ARTICLE

By Neuronicus, 25 January 2017

Save

Save

Soccer and brain jiggling

There is no news or surprise that strong hits to the head produce transient or permanent brain damage. But how about mild hits produced by light objects like, say, a volley ball or soccer ball?

During a game of soccer, a player is allowed to touch the ball with any part of his/her body minus the hands. Therefore, hitting the ball with the head, a.k.a. soccer heading, is a legal move and goals marked through such a move are thought to be most spectacular by the refined connoisseur.

A year back, in 2015, the United States Soccer Federation forbade the heading of the ball by children 10 years old and younger after a class-action lawsuit against them. There has been some data that soccer players display loss of brain matter that is associated with cognitive impairment, but such studies were correlational in nature.

Now, Di Virgilio et al. (2016) conducted a study designed to explore the consequences of soccer heading in more detail. They recruited 19 young amateur soccer players, mostly male, who were instructed to perform 20 rotational headings as if responding to corner kicks in a game. The ball was delivered by a machine at a speed of approximately 38 kph. The mean force of impact for the group was 13.1 ± 1.9 g. Immediately after the heading session and at 24 h, 48 h and 2 weeks post-heading, the authors performed a series of tests, among which are a transcranial magnetic stimulation (TMS) recording, a cognitive function assessment (by using the Cambridge Neuropsychological Test Automated Battery), and a postural control test.

Not being a TMS expert myself, I was wondering how do you record with a stimulator? TMS stimulates, it doesn’t measure anything. Or so I thought. The authors delivered brief  (1 ms) stimulating impulses to the brain area that controls the leg (primary motor cortex). Then they placed an electrode over the said muscle (rectus femoris or quadriceps femoris) and recorded how the muscle responded. Pretty neat. Moreover, the authors believe that they can make inferences about levels of inhibitory chemicals in the brain from the way the muscle responds. Namely, if the muscle is sluggish in responding to stimulation, then the brain released an inhibitory chemical, like GABA (gamma-amino butyric acid), hence calling this process corticomotor inhibition. Personally, I find this GABA inference a bit of a leap of faith, but, like I said, I am not fully versed in TMS studies so it may be well documented. Whether or not GABA is responsible for the muscle sluggishness, one thing is well documented though: this sluggishness is the most consistent finding in concussions.

The subjects had impaired short term and long term memory functions immediately after the ball heading, but not 24 h or more later. Also transient was the corticomotor inhibition. In other words, soccer ball heading results in measurable changes in brain function. Changes for the worst.

Even if these changes are transient, there is no knowing (as of yet) what prolonged ball heading might do. There is ample evidence that successive concussions have devastating effects on the brain. Granted, soccer heading does not produce concussions, at least in this paper’s setting, but I cannot think that even sub-concussion intensity brain disruption can be good for you.

On a lighter note, although the title of the paper features the word “soccer”, the rest o the paper refers to the game as “football”. I’ll let you guess the authors’ nationality or at least the continent of provenance ;).

109-football-copy

Reference: Di Virgilio TG, Hunter A, Wilson L, Stewart W, Goodall S, Howatson G, Donaldson DI, & Ietswaart M. (Nov 2016, Epub 23 Oct 2016). Evidence for Acute Electrophysiological and Cognitive Changes Following Routine Soccer Heading. EBioMedicine, 13:66-71. PMID: 27789273, DOI: 10.1016/j.ebiom.2016.10.029. ARTICLE | FREE FULLTEXT PDF

By Neuronicus, 20 December 2016

Earliest memories

I found a rather old-ish paper which attempts to settle a curiosity regarding human memory: how far back can we remember?

MacDonald et al. (2000) got 96 participants to fill a 15-minute questionnaire about their demographics and their earliest memories. The New Zealand subjects were in their early twenties, a third of Maori descent, a third of European descent and the last third of Asian descent.

The Maori had the earliest memories, some of them as early as before they turned 1 year old, though the mean was 2 years and 8 months. Next came the Europeans with the mean of 3 years and a half, followed by the Asians with the mean of 4 and 9 months. Overall, most memories seem to occur between 3 and 4 years. There was no difference in gender except for the Asian group where the females reported much later memories, around 6 years.

The subjects were also required to indicate the source of the memory as being personal recollection, family story or photographs. About 86% reported it as personal recollection. The authors argue that even without the remaining 14% the results looks the same. I personally would have left those 14% out if they really don’t make a difference, it would have made the results much neater.

There are a few caveats that one must keep in mind with this kind of studies, the questionnaire studies. One of them is the inherent veracity problem: you rely on human honesty because there is no way to check the data for truth. The fact that the memory may be true or false would not matter for this study, but whether is a personal recollection or a family story would matter. So take the results at face value. Besides, human memory is extremely easy to manipulate, therefore some participants may actually believe that they ‘remember’ an event when in fact it was learned much later from relatives. I also have very early memories and while one of them I believe was told ad nauseam by family members at every family gathering so many times that I incorporated it as actual recollection, there are a couple that I couldn’t tell you for the life of me whether I remember them truly or they too have been subjected to family re-reminiscing.

Another issue might be the very small sample sizes with sub-groups. The authors divided their participants in many subgroups (whether they spoke English first, whether they were raised mainly by the mother etc.) that some subgroups ended up having 2 or 3 members, which is not enough to make a statistical judgement. Which also leads me to multiple comparisons adjustments, which should be more visible.

So not exactly the best paper ever written. Nevertheless, it’s an interesting paper in that even if it doesn’t really establish (in my opinion) when do most people have their earliest true memories, it does point to cultural differences in individuals’ earliest recollections. The authors speculate that that may be due to the emphasis put on detailed stories about personal experiences told by the mother in the early years in some cultures (here Maori) versus a lack of these stories in other cultures (here Asian).

105-copy

Reference: MacDonald S, Uesiliana K, & Hayne H. (Nov 2000). Cross-cultural and gender differences in childhood amnesia. Memory. 2000 Nov;8(6):365-76. PMID: 11145068, DOI: 10.1080/09658210050156822. ARTICLE | FULLTEXT PDF

By Neuronicus, 28 November 2016

Save

Amusia and stroke

Although a complete musical anti-talent myself, that doesn’t prohibit me from fully enjoying the works of the masters in the art. When my family is out of earshot, I even bellow – because it cannot be called music – from the top of my lungs alongside the most famous tenors ever recorded. A couple of days ago I loaded one of my most eclectic playlists. While remembering my younger days as an Iron Maiden concert goer (I never said I listen only to classical music :D) and screaming the “Fear of the Dark” chorus, I wondered what’s new on the front of music processing in the brain.

And I found an interesting recent paper about amusia. Amusia is, as those of you with ancient Greek proclivities might have surmised, a deficit in the perception of music, mainly the pitch but sometimes rhythm and other aspects of music. A small percentage of the population is born with it, but a whooping 35 to 69% of stroke survivors exhibit the disorder.

So Sihvonen et al. (2016) decided to take a closer look at this phenomenon with the help of 77 stroke patients. These patients had an MRI scan within the first 3 weeks following stroke and another one 6 months poststroke. They also completed a behavioral test for amusia within the first 3 weeks following stroke and again 3 months later. For reasons undisclosed, and thus raising my eyebrows, the behavioral assessment was not performed at 6 months poststroke, nor an MRI at the 3 months follow-up. It would be nice to have had behavioral assessment with brain images at the same time because a lot can happen in weeks, let alone months after a stroke.

Nevertheless, the authors used a novel way to look at the brain pictures, called voxel-based lesion-symptom mapping (VLSM). Well, is not really novel, it’s been around for 15 years or so. Basically, to ascertain the function of a brain region, researchers either get people with a specific brain lesion and then look for a behavioral deficit or get a symptom and then they look for a brain lesion. Both approaches have distinct advantages but also disadvantages (see Bates et al., 2003). To overcome the disadvantages of these methods, enter the scene VLSM, which is a mathematical/statistical gimmick that allows you to explore the relationship between brain and function without forming preconceived ideas, i.e. without forcing dichotomous categories. They also looked at voxel-based morphometry (VBM), which a fancy way of saying they looked to see if the grey and white matter differ over time in the brains of their subjects.

After much analyses, Sihvonen et al. (2016) conclude that the damage to the right hemisphere is more likely conducive to amusia, as opposed to aphasia which is due mainly to damage to the left hemisphere. More specifically,

“damage to the right temporal areas, insula, and putamen forms the crucial neural substrate for acquired amusia after stroke. Persistent amusia is associated with further [grey matter] atrophy in the right superior temporal gyrus (STG) and middle temporal gyrus (MTG), locating more anteriorly for rhythm amusia and more posteriorly for pitch amusia.”

The more we know, the better chances we have to improve treatments for people.

104-copy

unless you’re left-handed, then things are reversed.

References:

1. Sihvonen AJ, Ripollés P, Leo V, Rodríguez-Fornells A, Soinila S, & Särkämö T. (24 Aug 2016). Neural Basis of Acquired Amusia and Its Recovery after Stroke. Journal of Neuroscience, 36(34):8872-8881. PMID: 27559169, DOI: 10.1523/JNEUROSCI.0709-16.2016. ARTICLE  | FULLTEXT PDF

2.Bates E, Wilson SM, Saygin AP, Dick F, Sereno MI, Knight RT, & Dronkers NF (May 2003). Voxel-based lesion-symptom mapping. Nature Neuroscience, 6(5):448-50. PMID: 12704393, DOI: 10.1038/nn1050. ARTICLE

By Neuronicus, 9 November 2016

Save

How do you remember?

Memory processes like formation, maintenance and consolidation have been the subjects of extensive research and, as a result, we know quite a bit about them. And just when we thought that we are getting a pretty clear picture of the memory tableau and all that is left is a little bit of dusting around the edges and getting rid of the pink elephant in the middle of the room, here comes a new player that muddies the waters again.

DNA methylation. The attaching of a methyl group (CH3) to the DNA’s cytosine by a DNA methyltransferase (Dnmt) was considered until very recently a process reserved for the immature cells in helping them meet their final fate. In other words, DNA methylation plays a role in cell differentiation by suppressing gene expression. It has other roles in X-chromosome inactivation and cancer, but it was not suspected to play a role in memory until this decade.

Oliveira (2016) gives us a nice review of the role(s) of DNA methylation in memory formation and maintenance. First, we encounter the pharmacological studies that found that injecting Dnmt inhibitors in various parts of the brain in various species disrupted memory formation or maintenance. Next, we see the genetic studies, where mice Dnmt knock-downs and knock-outs also show impaired memory formation and maintenance. Finally, knowing which genes’ transcription is essential for memory, the researcher takes us through several papers that examine the DNA de novo methylation and demethylation of these genes in response to learning events and its role in alternative splicing.

Based on these here available data, the author proposes that activity induced DNA methylation serves two roles in memory: to “on the one hand, generate a primed and more permissive epigenome state that could facilitate future transcriptional responses and on the other hand, directly regulate the expression of genes that set the strength of the neuronal network connectivity, this way altering the probability of reactivation of the same network” (p. 590).

Here you go; another morsel of actual science brought to your fingertips by yours truly.

99-dna-copy

Reference: Oliveira AM (Oct 2016, Epub 15 Sep 2016). DNA methylation: a permissive mark in memory formation and maintenance. Learning & Memory,  23(10): 587-593. PMID: 27634149, DOI: 10.1101/lm.042739.116. ARTICLE

By Neuronicus, 22 September 2016

Transcranial direct current stimulation & cognitive enhancement

There’s so much research out there… So much that some time ago I learned that in science, as probably in other fields too, one has only to choose a side of an argument and then, provided that s/he has some good academic search engines skills and institutional access to journals, get the articles that support that side. Granted, that works for relatively small questions restricted to narrow domains, like “is that brain structure involved in x” or something like that; I doubt you would be able to find any paper that invalidates theories like gravity or central dogma of molecular biology (DNA to RNA to protein).

If you’re a scientist trying to answer a question, you’ll probably comb through some dozens papers and form an opinion of your own after weeding out the papers with small sample sizes, the ones with shoddy methodology or simply the bad ones (yes, they do exists, even scientists are people and hence prone to mistakes). And if you’re not a scientist or the question you’re trying to find an answer for is not from your field, then you’ll probably go for reviews or meta-analyses.

Meta-analyses are studies that look at several papers (dozens or hundreds), pool their data together and then apply some complicated statistics to see the overall results. One such meta-analysis concerns the benefits, if any, of transcranial direct current stimulation (tDCS) on working memory (WM) in healthy people.

tDCS is a method of applying electrical current through some electrodes to your neurons to change how they work and thus changing some brain functions. It is similar with repetitive transcranial magnetic stimulation (rTMs), only in the latter case the change in neuronal activity is due to the application of a magnetic field.

Some people look at these methods not only as possible treatment for a variety of disorders, but also as cognitive enhancement tools. And not only by researchers, but also by various companies who sell the relatively inexpensive equipment to gamers and others. But does tDCS work in the first place?

92 conf - Copy (2)

Mancuso et al. (2016) say that there have been 3 recent meta-analyses done on this issue and they found that “the effects [of tDCS on working memory in healthy volunteers] are reliable though small (Hill et al., 2016), partial (Brunoni & Vanderhasselt, 2014), or nonexistent (Horvath et al., 2015)” (p. 2). But they say these studies are somewhat flawed and that’s why they conducted their own meta-analysis, which concludes that “the true enhancement potential of tDCS for WM remains somewhat uncertain” (p.19). Maybe it works a little bit if used during the training phase of a working memory task, like n-back, and even then that’s a maybe…

Boring, you may say. I’ll grant you that. So… all that work and it revealed virtually nothing new! I’ll grant you that too. But what this meta-analysis brings new, besides adding some interesting statistics, like controlling for publication bias, is a nice discussion as to why they didn’t find nothing much, exploring possible causes, like the small sample and effects sizes, which seem to plague many behavioral studies. Another explanation which, to tell you the truth, the authors do not seem to be too enamored with is that, maybe, just maybe, simply, tDCS doesn’t have any effect on working memory, period.

Besides, papers with seemingly boring findings do not catch the media eye, so I had to give it a little attention, didn’t I 😉 ?

Reference: Mancuso LE, Ilieva IP, Hamilton RH, & Farah MJ. (Epub 7 Apr 2016, Aug 2016) Does Transcranial Direct Current Stimulation Improve Healthy Working Memory?: A Meta-analytic Review. Journal of Cognitive Neuroscience, 28(8):1063-89. PMID: 27054400, DOI: 10.1162/jocn_a_00956. ARTICLE

 By Neuronicus, 2 August 2016

Fructose bad effects reversed by DHA, an omega-3 fatty acid

Despite alarm signals raised by various groups and organizations regarding the dangers of the presence of sugars – particularly fructose derived from corn syrup – in almost every food in the markets, only in the past decade there has been some serious evidence against high consumption of fructose.

A bitter-sweet (sic!) paper comes from Meng et al. (2016) who, in addition to showing some bad things that fructose does to brain and body, it also shows some rescue from its deleterious effects by DHA (docosahexaenoic acid), an omega-3 fatty acid.

The authors had 3 groups of rodents: one group got fructose in their water for 6 weeks, another group got fructose and DHA, and another group got their normal chow. The amount of fructose was calculated to be ecologically valid, meaning that they fed the animals the equivalent of 1 litre soda bottle per day (130 g of sugar for a 60 Kg human).

The rats that got fructose had worse learning and memory performance at a maze test compared to the other two groups.

The rats that got fructose had altered gene expression in two brain areas: hypothalamus (involved in metabolism) and hippocampus (involved in learning and memory) compared to the other two groups.

The rats that got fructose had bad metabolic changes that are precursors for Type 2 diabetes, obesity and other metabolic disorders (high blood glucose, triglycerides, insulin, and insulin resistance index) compared to the other two groups.

86 - Copy.jpg

The genetic analyses that the researchers did (sequencing the RNA and analyzing the DNA methylation) revealed a whole slew of the genes that had been affected by the fructose treatment. So, they did some computer work that involved Bayesian modeling  and gene library searching and they selected two genes (Bgn and Fmod) out of almost a thousand possible candidates who seemed to be the drivers of these changes. Then, they engineered mice that lacked these genes. The resultant mice had the same metabolic changes as the rats that got fructose, but… their learning and memory was even better than that of the normals? I must have missed something here. EDIT: Well… yes and no. Please read the comment below from the Principal Investigator of the study.

It is an ok paper, done by the collaboration of 7 laboratories from 3 countries. But there are a few things that bother me, as a neuroscientist, about it. First is the behavior of the genetic knock-outs. Do they really learn faster? The behavioral results are not addressed in the discussion. Granted, a genetic knockout deletes that gene everywhere in the brain and in the body, whereas the genetic alterations induced by fructose are almost certainly location-specific.

Which brings me to the second bother: nowhere in the paper (including the supplemental materials, yeas, I went through those) are any brain pictures or diagrams or anything that can tell us which nuclei of the hypothalamus the samples came from. Hypothalamus is a relatively small structure with drastically different functional nuclei very close to one another. For example, the medial preoptic nucleus that deals with sexual hormones is just above the suprachiasmatic nucleus that deals with circadian rhythms and near the preoptic is the anterior nucleus that deals mainly with thermoregulation. The nuclei that deal with hunger and satiety (the lateral and the ventromedial nucleus, respectively) are located in different parts of the hypothalamus. In short, it would matter very much where they got their samples from because the transcriptome and methylome would differ substantially from nucleus to nucleus. Hippocampus is not so complicated as that, but it also has areas with specialized functions. So maybe they messed up the identification of the two genes Bgn and Fmod as drivers of the changes; after all, they found almost 1 000 genes altered by fructose. And that mess-up might have been derived by their blind hypothalamic and hippocampal sampling. EDIT: They didn’t mess up,  per se. Turns out there were technical difficulties of extracting enough nucleic acids from specific parts of hypothalamus for analyses. I told you them nuclei are small…

Anyway, the good news comes from the first experiment, where DHA reverses the bad effects of fructose. Yeay! As a side note, the fructose from corn syrup is metabolized differently than the fructose from fruits. So you are far better off consuming the equivalent amount on fructose from a litre of soda in fruits. And DHA comes either manufactured from algae or extracted from cold-water oceanic fish oils (but not farmed fish, apparently).

If anybody that read the paper has some info that can help clarify my “bothers”, please do so in the Comment section below. The other media outlets covering this paper do not mention anything about the knockouts. Thanks! EDIT: The last author of the paper, Dr. Yang, was very kind and clarified a bit of my “bothers” in the Comments section. Thanks again!

Reference: Meng Q, Ying Z, Noble E, Zhao Y, Agrawal R, Mikhail A, Zhuang Y, Tyagi E, Zhang Q, Lee J-H, Morselli M, Orozco L, Guo W, Kilts TM, Zhu J, Zhang B, Pellegrini M, Xiao X, Young MF, Gomez-Pinilla F, Yang X (2016). Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders. EBioMedicine, doi: 10.1016/j.ebiom.2016.04.008. Article | FREE fulltext PDF | Supplementals | Science Daily cover | NeuroscienceNews cover

By Neuronicus, 24 April 2016

A third way of neuronal communication

electrical fields - CopyEvery neuroscience or biology textbook will tell you that neurons communicate with one another in two ways: via chemical synapses (one neuron releases some substances that change the membrane potential of the receiving neuron) or via electrical synapses (neurons physically share some membrane proteins that allows the electrical impulse to go from one neuron to another). (Nota bene: for the taxonomic nitpickers, I decided that the other non-conventional forms of communication, like diffusion, fall in one or the other of the two categories above).

Now Qiu et al. (2015) have some evidence that there may be another way of neuronal chatting. Long ago (in 1924), Hans Berger observed that neurons have rhythmic and spontaneous electrical activity. The rhythmic activity of an entire population of neurons is called a wave and can be detected with rudimentary tools such as EEG. Qiu et al. reasoned that the speed of such a traveling wave is too slow to be explained by conventional neuronal communication (of which we know quite a lot).

So the researchers ran some computer simulations to test if diffuse electrical fields can explain the speed of a wave, instead of the conventional fast communications. In other words, can local, weak, slow endogenous fields sweep the brain by recruiting nearby neurons? The computer simulations said it is possible, with a very slow speed of 10 cm/s.

Then they recorded the electrical activity of mouse hippocampus isolated in a Petri dish. When the researchers blocked the electrical field there was a decrease in the speed of the wave, meaning the field is required for the wave speed observed.

To be fair, this is not a new idea; even in the early eighties these fields were suggested, because the wave persisted even when the other two ways of communicating have been blocked. And in the early noughts it was shown that a neural network is much more sensitive to electrical field manipulation than individual neurons. What makes this paper interesting is that the authors show that the endogenous electrical fields are not too weak to underlie the wave, as previously thought. The work has implications for the study of epilepsy, sleep, and memory.

Reference: Qiu C, Shivacharan RS, Zhang M, & Durand DM (2 December 2015). Can Neural Activity Propagate by Endogenous Electrical Field?, Journal of Neuroscience, 35(48): 15800-15811; doi: 10.1523/JNEUROSCI.1045-15.2015 Article | Full Text via Research Gate | ScienceAlert cover

By Neuronicus, 11 February 2016

Learning chess can improve math skills

chess - Copy

Twenty-two years ago to the day, on January 30, 1994, Peter Leko became the world’s youngest chess grandmaster, at the age of 14.

A proficiency in chess is often linked with higher intelligence, that is, the more intelligent you are, the more likely to be good at chess. This assumption has roots probably in the observation that chess does not allow for random chance or physical attributes, as most games do. So it follows that of you are good at it, it must be… intelligence, although there are at least an equal number of studies if not more that show that practice has more an impact on your chess ability that your native IQ score.

Personally, as one that always looks askance whenever there is talk about intelligence quotient and intelligence tests, I have serious doubts that any of these papers measured what they claimed they measured. And that is because I find the construct “intelligence” poorly defined and, as a direct consequence, hard to measure.

That being said, Sala et al. (2015) wanted to see if chess practice can enhance mathematical problem-solving abilities in young students. The authors divided 560 pupils (8 to 11 years old) into two groups: one group received chess training for 10-15 hours (1 or 2 hours per week) and an option to use a chess program, while the other group did not participate in any chess activities. The experiment took 3 months.

Both groups were tested before and after training with a mathematical problem-solving test battery and a chess ability test.

“Results show a strong correlation between chess and math scores, and a higher improvement in math in the experimental group compared with the control group. These results foster the hypothesis that even a short-time practice of chess in children can be a useful tool to enhance their mathematical abilities.” (Sala et al. (2015, Abstract).

This is all nice and well, were it not for the fact that their experimental group had significantly more pupils that already knew how to play chess (193 out of 309, 62%) compared to the control group (72 out of 251, 29%). To give credit to the authors, they acknowledge this limitation of the study, but, surprisingly, they do not run their stats without the “I-already-know-chess” subjects….

Nevertheless, even if the robustness and the arguments are a little on the shoddy side, the paper points to a possible fruitful line of research: that of additional tools to improve school performance by incorporating game and playtime into the instructors’ and parents’ teaching arsenal.

Reference: Sala G, Gorini A, & Pravettoni G (23 July 2015). Mathematical Problem-Solving Abilities and Chess. An Experimental Study on Young Pupils. SAGE Open, 1-9. DOI: 10.1177/2158244015596050. Article | FREE PDF

By Neuronicus, 30 January 2016

CCL11 found in aged but not young blood inhibits adult neurogenesis

vil - Copy
Portion of Fig. 1 from Villeda et al. (2011, doi: 10.1038/nature10357) describing the parabiosis procedure. Basically, under complete anesthesia, the peritoneal membranes and the skins of the two mice were sutured together. The young mice were 3–4 months (yellow) and old mice were 18–20 months old (grey).

My last post was about parabiosis and its sparse revival as a technique in physiology experiments. Parabiosis is the surgical procedure that joins two living animals allowing them to share their circulatory systems. Here is an interesting paper that used the method to tackle blood’s contribution to neurogenesis.

Adult neurogenesis, that is the birth of new neurons in the adult brain, declines with age. This neurogenesis has been observed in some, but not all brain regions, called neurogenic niches.

Because these niches occur in blood-rich areas of the brain, Villeda et al. (2011) wondered if, in addition with the traditional factors required for neurogenesis like enrichment or running, blood factors may also have something to do with neurogenesis. The authors made a young and an old mouse to share their blood via parabiosis (see pic.)

Five weeks after the parabiosis procedure, the young mouse had decreased neurogenesis and the old mouse had increased neurogenesis compared to age-matched controls. To make sure their results are due to something in the blood, they injected plasma from a old mouse into a young mouse and that also resulted in reduced neurogenesis. Moreover, the reduced neurogenesis was correlated with impaired learning as shown by electrophysiological recordings from the hippocampus and from behavioral fear conditioning.

So what in the blood does it? The authors looked at 66 proteins found in the blood (I don’t know the blood make-up, so I can’t tell if 66 is a lot or not ) and noticed that 6 of these had increased levels in the blood of ageing mice whether linked by parabiosis or not. Out of these six, the authors focus on CCL11 (unclear to me why that one, my bet is that they tried the others too but didn’t have enough data). CCLL11 is a small signaling protein involved in allergies. So the authors injected it into young mice and Lo and Behold! there was decreased neurogenesis in their hippocampus. Maybe the vampires were onto something, whadda ya know? Just kidding… don’t go around sucking young people’s blood!

This paper covers a lot of work and, correspondingly, has no less than 23 authors and almost 20 Mb of supplemental documents! The story it tells is very interesting and as complete as it gets, covering many aspects of the problems investigated and many techniques to address those problems. Good read.

Reference: Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G, Stan TM, Fainberg N, Ding Z, Eggel A, Lucin KM, Czirr E, Park JS, Couillard-Després S, Aigner L, Li G, Peskind ER, Kaye JA, Quinn JF, Galasko DR, Xie XS, Rando TA, Wyss-Coray T. (31 Aug 2011). The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature. 477(7362):90-94. doi: 10.1038/nature10357. Article | FREE PDF

By Neuronicus, 6 January 2016