Midichlorians, midichloria, and mitochondria

Nathan Lo is an evolutionary biologist interested in creepy crawlies, i.e. arthropods. Well, he’s Australian, so I guess that comes with the territory (see what I did there?). While postdoc’ing, he and his colleagues published a paper (Sassera et al., 2006) that would seem boring for anybody without an interest in taxonomy, a truly under-appreciated field.

The paper describes a bacterium that is a parasite for the mitochondria of a tick species called Ixodes ricinus, the nasty bugger responsible for Lyme disease. The authors obtained a female tick from Berlin, Germany and let it feed on a hamster until it laid eggs. By using genetic sequencing (you can use kits these days to extract the DNA, do PCR, gels and cloning, pretty much everything), electron microscopy (real powerful microscopes) and phylogenetic analysis (using computer softwares to see how closely related some species are) the authors came to the conclusion that this parasite they were working on is a new species. So they named it. And below is the full account of the naming, from the horse’s mouth, as it were:

“In accordance with the guidelines of the International Committee of Systematic Bacteriology, unculturable bacteria should be classified as Candidatus (Murray & Stackebrandt, 1995). Thus we propose the name ‘Candidatus Midichloria mitochondrii’ for the novel bacterium. The genus name Midichloria (mi.di.chlo′ria. N.L. fem. n.) is derived from the midichlorians, organisms within the fictional Star Wars universe. Midichlorians are microscopic symbionts that reside within the cells of living things and ‘‘communicate with the Force’’. Star Wars creator George Lucas stated that the idea of the midichlorians is based on endosymbiotic theory. The word ‘midichlorian’ appears to be a blend of the words mitochondrion and chloroplast. The specific epithet, mitochondrii (mi.to′chon.drii. N.L. n. mitochondrium -i a mitochondrion; N.L. gen. n. mitochondrii of a mitochondrion), refers to the unique intramitochondrial lifestyle of this bacterium. ‘Candidatus M. mitochondrii’ belongs to the phylum Proteobacteria, to the class Alphaproteobacteria and to the order Rickettsiales. ‘Candidatus M. mitochondrii’ is assigned on the basis of the 16S rRNA (AJ566640) and gyrB gene sequences (AM159536)” (p. 2539).

George Lucas gave his blessing to the Christening (of course he did).

119-midi - Copy1 - Copy.jpg

Acknowledgements: Thanks go to Ms. BBD who prevented me from making a fool of myself – this time – on the social media by pointing out to me that midichloria are real and that they are a mitochondrial parasite.

REFERENCE: Sassera D, Beninati T, Bandi C, Bouman EA, Sacchi L, Fabbi M, Lo N. (Nov. 2006). ‘Candidatus Midichloria mitochondrii’, an endosymbiont of the tick Ixodes ricinus with a unique intramitochondrial lifestyle. International Journal of Systematic and Evolutionary Microbiology, 56(Pt 11): 2535-2540. PMID: 17082386, DOI: 10.1099/ijs.0.64386-0. ABSTRACT | FREE FULLTEXT PDF 

By Neuronicus, 29 July 2017

The FIRSTS: discovery of the polymerase (1956)

Arthur Kornberg. License: PD, courtesy of the National Library of Medicine
Arthur Kornberg. License: PD, courtesy of the National Library of Medicine

Polymerases are enzymes that synthesize nucleic acids. The main types of polymerases are DNA polymerases and RNA polymerases. Everything alive has them. Saying that you cannot have cellular life on Earth without them is like saying you cannot have a skeleton without bones.

The first polymerase was discovered by Arthur Kornberg in 1956. Of note, his (and his two postdocs and lab technician) discovery was rejected for publication by The Journal of Biological Chemistry basically on the grounds that they don’t know what they’re talking about or they’re not qualified to talk about it. It took a new Editor-in-Chief to push the publication which finally appeared in the July 1958 issue. Talk about politicking in academia…

Diagram of DNA polymerase extending a DNA strand and proof-reading. License: PD. Credit: Madeleine Price Ball
Diagram of DNA polymerase extending a DNA strand and proof-reading. License: PD. Credit: Madeleine Price Ball

Anyway, less than a year since publication, in 1959, Kornberg (but not his co-authors) received the Nobel Prize for the discovery of the polymerase. Which he isolated from a bug called E. Coli, the same bacterium that can be found in your intestines and poop or can give you food poisoning (same species, but not necessarily the same strain).

Reference: Lehman IR, Bessman MJ, Simms ES, & Kornberg A (July 1958). Enzymatic Synthesis of Deoxyribonucleic Acid. I. Preparation of Substrates and Partial Purification of an enzyme from Escherichia Coli. The Journal of Biological Chemistry, 233:163-170. FREE FULLTEXT PDF | 2005 JBC Centennial Cover

By Neuronicus, 7 November 2015

Golf & Grapes OR Grandkids (but not both!)

Pesticides may be bad for you, but they are devastating for your great grandchildren, because there will be no great great grandchildren. Photo Credit: JetsandZeppelins from Flickr under CC BY 2.0 license
Pesticides may be bad for you, but they are devastating for your great grandchildren, because there will be no great great grandchildren. Photo Credit: JetsandZeppelins from Flickr under CC BY 2.0 license

Transgenerational epigenetic inheritance (TGI) refers to the inheritance of a trait from one generation to another without altering the DNA code (normally, evolution is driven by changes in the DNA itself). Instead, it happens by modifying the proteins that wrap around the DNA, the histones; these histones, in turn, control what genes will be expressed and when. Until a decade ago, TGI was considered impossible, nay, a scientific heresy since it had too close of a resemblance to Lamarckian evolution. But, true to its guiding principles, the scientific endeavor had to bite the bullet in front of amassing evidence and accept the fact that it may have been a kernel of truth to the so called ‘soft inheritance’.

Anway et al.’s paper was one of the first to promote the concept, ten years ago. They exposed pregnant rats to the pesticides vinclozolin or methoxychlor (only vinclozolin is still used widely in U.S.A. and several EU countries, particularly in agriculture, wine production, and turf maintenance; methoxychlor was banned in the early noughts). The authors found out that more than 90% of the male offspring had “increased incidence of male infertility”. These effects were transferred through the male germ line to nearly all males of all subsequent generations examined” up to great great grandsons, inclusively (Anway et al., 2005). (I don’t want to speculate how they managed to breed the low fertility males…). That doesn’t mean that the F5 generation was OK (the great great great gransons); it means that they stopped investigating after the F4 generation (or they couldn’t breed the F4s). Moreover, the mechanism of inheritance seems to be altered methylation of the DNA histones of the male germline, and not alteration of the DNA itself. Females were affected too, but they didn’t have enough data on that experiment (the Ph.D. student that did the work had to graduate sometime…).

Although the authors used higher amounts of pesticides than they suspected back then, in 2005, to be found in the environment, the study still gives pause for thought. After all, it has been 10 years since this paper plus the previous 20 years of use of the stuff. And no, you cannot get rid of it by washing your grapes and vegetables really thoroughly.

Reference: Anway, M. D., Cupp, A. S., Uzumcu, M., & Skinner, M. K. (3 June 2005). Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science, 308(5727): 1466-1469. DOI:10.1126/science.1108190. Article + Science Cover + FREE PDF

by Neuronicus, 25 September 2015