Teach handwriting in schools!

I have begun this blogpost many times. I have erased it many times. That is because the subject of today – handwriting – is very sensitive for me. Most of what I wrote and subsequently erased was a rant: angry at rimes, full of profanity at other times. The rest were paragraphs that can be easily categorized as pleading, bargaining, imploring to teach handwriting in American schools. Or, if they already do, to do it less chaotically, more seriously, more consistently, with a LOT more practice and hopefully before the child hits puberty.

Because, contrary to most educators’ beliefs, handwriting is not the same as typing. Nor is printing / manuscript writing the same as cursive writing, but that’s another kettle.

Somehow, sometime, a huge disjointment happened between scholarly researchers and educators. In medicine, the findings of researchers tend to take 10-15 years until they start to be believed and implemented in medical practice. In education… it seems that even findings cemented by Nobel prizes 100 years ago are alien to the ranks of educators. It didn’t used to be like that. I don’t know when educators became distrustful of data and science. When exactly did they start to substitute evidence with “feels right” and “it’s our school’s philosophy”. When did they start using “research shows… ” every other sentence without being able to produce a single item, name, citation, paper, anything of said research. When did the educators become so… uneducated. I could write (and rant!) a lot about the subject of handwriting or about what exactly a Masters in Education teaches the educators. But I’m so tired of it before I even begun because I’m doing it for a while now and it’s exhausting. It takes an incredible amount of effort, at least for me, to bring the matter of writing so genteelly, tactfully, and non-threateningly to the attention of the fragile ego of the powers that be in charge of the education of the next generation. Yes, yes, there must be rara aves among the educators who actually teach and do listen to or read papers on education from peer-reviewed journals; but I didn’t find them. I wonder who the research in education is for, if neither the educators nor policy makers have any clue about it.

Here is another piece of education research which will probably go unremarked by the ones it is intended for, i.e. educators and policy makers. Mueller & Oppenheimer (2014) took a closer look at the note-taking habits of 65 Princeton and 260 UCLA students. The students were instructed to take notes in their usual classroom style from 5 x >15 min long TED talks, which were “interesting but not common knowledge” (p. 1160). Afterwards, the subjects completed a hard working-memory task and answered factual and conceptual questions about the content of the “lectures”.

The students who took notes in writing (I’ll call them longhanders) performed significantly better at conceptual questions about the lecture content that the ones who typed on laptops (typers). The researchers noticed that the typers tend to write verbatim what it’s being said, whereas the longhanders don’t do that, which corresponds directly with their performance. In their words,

“laptop note takers’ tendency to transcribe lectures verbatim rather than processing information and reframing it in their own words is detrimental to learning.” (Abstract).

Because typing is faster than writing, the typers can afford to not think of what they type and be in a full scribe mode with the brain elsewhere and not listening to a single word of the lecture (believe me, I know, both as a student and as a University professor). Contrary to that, the longhanders cannot write verbatim and must process the information to extract what’s relevant. In the words of cognitive psychologists everywhere and present in every cognitive psychology textbook written over the last 70 years: depth of processing facilitates learning. Maybe that could be taught in a Masters of Education…

Pet peeves aside, the next step in the today’s paper was to see if you force the typers to forgo the verbatim note-taking and do some information processing might improve learning. It did not, presumably because “the instruction to not take verbatim notes was completely ineffective at reducing verbatim content (p = .97)” (p. 1163).

The laptop typers did take more notes though, by word count. So in the next study, the researchers asked the question “If allowed to study their notes, will the typers benefit from their more voluminous notes and show better performance?” This time the researchers made 4 x 7-min long lectures on bats, bread, vaccines, and respiration and tested them 1 week alter. The results? The longhanders who studied performed the best. The verbatim typers performed the worst, particularly on conceptual versus factual questions, despite having more notes.

For the sake of truth and in the spirit of the overall objectivity of this blog, I should note that the paper is not very well done. It has many errors, some of which were statistical and corrected in a Corrigendum, some of which are methodological and can be addressed by a bigger study with more carefully parsed out controls and more controlled conditions, or at least using the same stimuli across studies. Nevertheless, at least one finding is robust as it was replicated across all their studies:

“In three studies, we found that students who took notes on laptops performed worse on conceptual questions than students who took notes longhand” (Abstract)

Teachers, teach handwriting! No more “Of course we teach writing, just…, just not now, not today, not this year, not so soon, perhaps not until the child is a teenager, not this grade, not my responsibility, not required, not me…”.

157 handwriting - Copy

REFERENCE: Mueller, PA & Oppenheimer, DM (2014). The Pen Is Mightier Than the Keyboard: Advantages of Longhand Over Laptop Note Taking. Psychological Science, 25(6): 1159–1168. DOI: 10.1177/0956797614524581. ARTICLE | FULLTEXT PDF | NPR cover

By Neuronicus, 1 Sept. 2019

P. S. Some of my followers pointed me to a new preregistered study that failed to replicate this paper (thanks, followers!). Urry et al. (2019) found that the typers have more words and take notes verbatim, just as Mueller & Oppenheimer (2014) found, but this did not benefit the typers, as there wasn’t any difference between conditions when it came to learning without study.

The authors did not address the notion that “depth of processing facilitates learning” though, a notion which is now theory because it has been replicated ad nauseam in hundreds of thousands of papers. Perhaps both papers can be reconciled if a third study were to parse out the attention component of the experiments by, perhaps, introspection questionnaires. What I mean is that the typers can do mindless transcription and there is no depth of processing, resulting in the Mueller & Oppenheimer (2014) observation or they can actually pay attention to what they type and then there is depth of processing, in which case we have Urry et al. (2019) findings. But the longhanders have no choice but to pay attention because they cannot write verbatim, so we’re back to square one, in my mind, that longhanders will do better overall. Handwriting your notes is the safer bet for retention then, because your attention component is not voluntary, but required for the task, as it were, at hand.

REFERENCE: Urry, H. L. (2019, February 9). Don’t Ditch the Laptop Just Yet: A Direct Replication of Mueller and Oppenheimer’s (2014) Study 1 Plus Mini-Meta-Analyses Across Similar Studies. PsyArXiv. doi:10.31234/osf.io/vqyw6. FREE FULLTEXT PDF

By Neuronicus, 2 Sept. 2019

Pic of the day: African dogs sneeze to vote

156_dog sneeze - CopyExcerpt from Walker et al. (2017), p. 5:

“We also find an interaction between total sneezes and initiator POA in rallies (table 1) indicating that the number of sneezes required to initiate a collective movement differed according to the dominance of individuals involved in the rally. Specifically, we found that the likelihood of rally success increases with the dominance of the initiator (i.e. for lower POA categories) with lower-ranking initiators requiring more sneezes in the rally for it to be successful (figure 2d). In fact, our raw data and the resultant model showed that rallies never failed when a dominant (POA1) individual initiated and there were at least three sneezes, whereas rallies initiated by lower ranking individuals required a minimum of 10 sneezes to achieve the same level of success. Together these data suggest that wild dogs use a specific vocalization (the sneeze) along with a variable quorum response mechanism in the decision-making process. […]. We found that sneezes, a previously undocumented unvoiced sound in the species, are positively correlated with the likelihood of rally success preceding group movements and may function as a voting mechanism to establish group consensus in an otherwise despotically driven social system.”

REFERENCE: Walker RH, King AJ, McNutt JW, & Jordan NR (6 Sept. 2017). Sneeze to leave: African wild dogs (Lycaon pictus) use variable quorum thresholds facilitated by sneezes in collective decisions. Proceedings of the Royal Society B. Biological Sciences, 284(1862). pii: 20170347. doi: 10.1098/rspb.2017.0347. PMID: 28878054, PMCID: PMC5597819, DOI: 10.1098/rspb.2017.0347 ARTICLE | FREE FULLTEXT PDF

By Neuronicus, 1 August 2019

Education raises intelligence

Intelligence is a dubious concept in psychology and biology because it is difficult to define. In any science, something has a workable definition when it is described by unique testable operations or observations. But “intelligence” had eluded that workable definition, having gone through multiple transformations in the past hundred years or so, perhaps more than any other psychological construct (except “mind”). Despite Binet’s first claim more than a century ago that there is such a thing as IQ and he has a way to test for it, many psychologists and, to a lesser extent, neuroscientists are still trying to figure out what it is. Neuroscientists to a lesser extent because once the field as a whole could not agree upon a good definition, it moved on to the things that they can agree upon, i.e. executive functions.

Of course, I generalize trends to entire disciplines and I shouldn’t; not all psychology has a problem with operationalizations and replicability, just as not all neuroscientists are paragons of clarity and good science. In fact, the intelligence research seems to be rather vibrant, judging by the publications number. Who knows, maybe the psychologists have reached a consensus about what the thing is. I haven’t truly kept up with the IQ research, partly because I think the tests used for assessing it are flawed (therefore you don’t know what exactly you are measuring) and tailored for a small segment of the population (Western society, culturally embedded, English language conceptualizations etc.) and partly because the circularity of definitions (e.g. How do I know you are highly intelligent? You scored well at IQ tests. What is IQ? What the IQ tests measure).

But the final nail in the coffin of intelligence research for me was a very popular definition of Legg & Hutter in 2007: intelligence is “the ability to achieve goals”. So the poor, sick, and unlucky are just dumb? I find this definition incredibly insulting to the sheer diversity within the human species. Also, this definition is blatantly discriminatory, particularly towards the poor, whose lack of options, access to good education or to a plain healthy meal puts a serious brake on goal achievement. Alternately, there are people who want for nothing, having been born in opulence and fame but whose intellectual prowess seems to be lacking, to put it mildly, and owe their “goal achievement” to an accident of birth or circumstance. The fact that this definition is so accepted for human research soured me on the entire field. But I’m hopeful that the researchers will abandon this definition more suited for computer programs than for human beings; after all, paradigmatic shifts happen all the time.

In contrast, executive functions are more clearly defined. The one I like the most is that given by Banich (2009): “the set of abilities required to effortfully guide behavior toward a goal”. Not to achieve a goal, but to work toward a goal. With effort. Big difference.

So what are those abilities? As I said in the previous post, there are three core executive functions: inhibition/control (both behavioral and cognitive), working memory (the ability to temporarily hold information active), and cognitive flexibility (the ability to think about and switch between two different concepts simultaneously). From these three core executive functions, higher-order executive functions are built, such as reasoning (critical thinking), problem solving (decision-making) and planning.

Now I might have left you with the impression that intelligence = executive functioning and that wouldn’t be true. There is a clear correspondence between executive functioning and intelligence, but it is not a perfect correspondence and many a paper (and a book or two) have been written to parse out what is which. For me, the most compelling argument that executive functions and whatever it is that the IQ tests measure are at least partly distinct is that brain lesions that affect one may not affect the other. It is beyond the scope of this blogpost to analyze the differences and similarities between intelligence and executive functions. But to clear up just a bit of the confusion I will say this broad statement: executive functions are the foundation of intelligence.

There is another qualm I have with the psychological research into intelligence: a big number of psychologists believe intelligence is a fixed value. In other words, you are born with a certain amount of it and that’s it. It may vary a bit, depending on your life experiences, either increasing or decreasing the IQ, but by and large you’re in the same ball-park number. In contrast, most neuroscientists believe all executive functions can be drastically improved with training. All of them.

After this much semi-coherent rambling, here is the actual crux of the post: intelligence can be trained too. Or I should say the IQ can be raised with training. Ritchie & Tucker-Drob (2018) performed a meta-analysis looking at over 600,000 healthy participants’ IQ and their education. They confirmed a previously known observation that people who score higher at IQ tests complete more years of education. But why? Is it because highly intelligent people like to learn or because longer education increases IQ? After carefully and statistically analyzing 42 studies on the subject, the authors conclude that the more educated you are, the more intelligent you become. How much more? About 1 to 5 IQ points per 1 additional year of education, to be precise. Moreover, this effect persists for a lifetime; the gain in intelligence does not diminish with the passage of time or after exiting school.

This is a good paper, its conclusions are statistically robust and consistent. Anybody can check it out as this article is an open access paper, meaning that not only the text but its entire raw data, methods, everything about it is free for everybody.

155 education and iq

For me, the conclusion is inescapable: if you think that we, as a society, or you, as an individual, would benefit from having more intelligent people around you, then you should support free access to good education. Not exactly where you thought I was going with this, eh ;)?

REFERENCE: Ritchie SJ & Tucker-Drob EM. (Aug, 2018, Epub 18 Jun 2018). How Much Does Education Improve Intelligence? A Meta-Analysis. Psychological Science, 29(8):1358-1369. PMID: 29911926, PMCID: PMC6088505, DOI: 10.1177/0956797618774253. ARTICLE | FREE FULLTEXT PDF | SUPPLEMENTAL DATA  | Data, codebooks, scripts (Mplus and R), outputs

Nota bene: I’d been asked what that “1 additional year” of education means. Is it with every year of education you gain up to 5 IQ points? No, not quite. Assuming I started as normal IQ, then I’d be… 26 years of education (not counting postdoc) multiplied by let’s say 3 IQ points, makes me 178. Not bad, not bad at all. :))). No, what the authors mean is that they had access to, among other datasets, a huge cohort dataset from Norway from the moment when they increased the compulsory education by 2 years. So the researchers could look at the IQ tests of the people before and after the policy change, which were administered to all males at the same age when they entered compulsory military service. They saw the increase in 1 to 5 IQ points per each extra 1 year of education.

By Neuronicus, 14 July 2019

Gaming can improve cognitive flexibility

It occurred to me that my blog is becoming more sanctimonious than I’d like. I have many posts about stuff that’s bad for you: stress, high fructose corn syrup, snow, playing soccer, cats, pesticides, religion, climate change, even licorice. So I thought to balance it a bit with stuff that is good for you. To wit, computer games; albeit not all, of course.

An avid gamer myself, those who know me would hardly be surprised that I found a paper cheering StarCraft. A bit of an old game, but still a solid representative of the real-time strategy (RTS) genre.

About a decade ago, a series of papers emerged which showed that first-person shooters and action games in general improve various aspects of perceptual processing. It makes sense because in these games split second decisions and actions make the difference between win or lose, so the games act as training experience for increased sensitivity to cues that facilitate said decisions. But what about games where the overall strategy and micromanagement skills are a bit more important than the perceptual skills, a.k.a. RTS? Would these games improve the processes underlying strategical thinking in a changing environment?

Glass, Maddox, & Love (2013) sought to answer this question by asking a few dozen undergraduates with little gaming experience to play a slightly modified StarCraft game for 40 hours (1 hour per day). “StarCraft (published by Blizzard Entertainment, Inc. in 1998) (…) involves the creation, organization, and command of an army against an enemy army in a real-time map-based setting (…) while managing funds, resources, and information regarding the opponent ” (p. 2). The participants were all female because they couldn’t find enough male undergraduates that played computer games less than 2 hours per day. The control group had to play The Sims 2 for the same amount of time, a game where “participants controlled and developed a single ‘‘family household’’ in a virtual neighborhood” (p.3.). The researchers cleverly modified the StarCraft game in such a way that they replaced a perceptual component with a memory component (disabled some maps) and created two versions: one more complex (full-map, two friendly, two enemy bases) and one less so (half-map, one friendly, one enemy bases). The difficulty for all games was set at a win rate of 50%.

Before and after the game-playing, the subjects were asked to complete a huge battery of tests destined to test their memory and various other cognitive processes. By carefully parsing these out, the authors conclude that “forty hours of training within an RTS game that stresses rapid and simultaneous maintenance, assessment, and coordination between multiple information and action sources was sufficient” to improve cognitive flexibility. Moreover, authors point out that playing on a full-map with multiple allies and enemies is conducive to such improvement, whereas playing a less cognitive resources demanding game, despite similar difficulty levels, was not. Basically, the more stuff you have to juggle, the better your flexibility will be. Makes sense.

My favorite take from this paper though is not only that StarCraft is awesome, obviously, but that “cognitive flexibility is a trainable skill” (p. 5). Let me tell you why that is so grand.

Cognitive flexibility is an important concept in the neuroscience of executive functioning. The same year that this paper was published, Diamond was publishing an excellent review paper in which she neatly identified three core executive functions: inhibition/control (both behavioral and cognitive), working memory (the ability to temporarily hold information active), and cognitive flexibility (the ability to think about and switch between two different concepts simultaneously). From these three core executive functions, higher-order executive functions are built, such as reasoning (critical thinking), problem solving (decision-making) and planning.

Unlike some old views on the immutability of the inborn IQ, each one of the core and higher-order executive functions can be improved upon with training at any point in life and can suffer if something is not right in your life (stress, loneliness, sleep-deprived or sick). This paper adds to the growing body of evidence showing that executive functions can be trainable. Intelligence, however you want to define it, relies upon executive functions, at least some of them, and perhaps boosting cognitive flexibility might result in a slight increase in the IQ, methinks.

Bottom line: real-time strategy games with huge maps and tons of stuff to do are good for you. Here you go.

154 starcraft - Copy
The StarCraft images, both foreground and background, are copyrighted to © 1998 Blizzard Entertainment.

REFERENCES:

  1. Glass BD, Maddox WT, Love BC. (7 Aug 2013). Real-time strategy game training: emergence of a cognitive flexibility trait. PLoS One, 2;8(8):e70350. eCollection 2013. PMID: 23950921, PMCID: PMC3737212, DOI: 10.1371/journal.pone.0070350. ARTICLE | FREE FULLTEXT PDF
  2. Diamond A (2013, Epub 27 Sept. 2012). Executive Functions. 64:135-68. PMID: 23020641, PMCID: PMC4084861, DOI: 10.1146/annurev-psych-113011-143750. ARTICLE | FREE FULLTEXT PDF

By Neuronicus, 15 June 2019

The FIRSTS: Guanine comes from guano (1846)

This is about naming things in science. You have been warned!

The DNA is made of four nucleobases: adenine (A), thymine (T), cytosine (C) and guanine (G). The “letters” of the code. Each of them has been named from where they were originally obtained by the scientists who first identified and/or isolated them.

Adenine was named thus because it was extracted from the pancreas of an ox, which is aden in Greek (the pancreas, not the ox), by the Nobel laureate Albrecht Kossel in 1885.

Thymine comes from thymic acid, which was extracted from the thymus gland of calves by the same Albrecht Kossel and Albert Neumann in 1893.

A year later, the duo named cytosine, another base obtained from the same thymus tissue. Cyto- pertains to cells in Greek.

Fifty years before that, Julion Bodo Unger, a German chemist, extracted the guanine from the guano of sea birds. Why was he looking at bird poop, curious minds inquire? Because he was studying it for its uses as fertilizer. The year of discovery was 1844 and the year of the naming was 1846.

And now you know…

153 guano - Copy

REFERENCE: Unger, JB (1846). Bemerkungen zu obiger Notiz (Comments on the above notice), Annalen der Chemie und Pharmacie, 58: 18-20. From page 20: … desshalb möchte ich den Namen Guanin vorschlagen, welcher an seine Herkunft erinnert.” ( “… therefore I would like to suggest the name guanine, which is reminiscent of its origin”.) (Wikipedia translation). Google Books | Google Book PDF

By Neuronicus, 3 June 2019

The FIRSTS: Lack of happy events in depression (2003)

My last post focused on depression and it reminded me of something that I keep telling my students and they all react with disbelief. Well, I tell them a lot of things to which they react with disbelief, to be sure, but this one I keep thinking it should not generate such incredulity. The thing is: depressed people perceive the same amount of negative events happening to them as healthy people, but far fewer positive ones. This seems to be counter-intuitive to non-professionals, who believe depressed people are just generally sadder than average and that’s why they see the half-empty side of the glass of life.

So I dug out the original paper who found this… finding. It’s not as old as you might think. Peeters et al. (2003) paid $30/capita to 86 people, 46 of which were diagnosed with Major Depressive Disorder and seeking treatment in a community mental health center or outpatient clinic (this is in Netherlands). None were taking antidepressants or any other drugs, except low-level anxiolytics. Each participant was given a wristwatch that beeped 10 times a day at semi-random intervals of approximately 90 min. When the watch beeped, the subjects had to complete a form within maximum 25 min answering questions about their mood, currents events, and their appraisal of those events. The experiment took 6 days, including weekend.

The results? Contrary to popular belief, people with depression “did not report more frequent negative events, although they did report fewer positive events and appraised both types of events as more stressful” (p. 208). In other words, depressed people are not seeing half-empty glasses all the time; instead, they don’t see the half-full glasses. Note that they regarded both negative and positive events as stressful. We circle back to the ‘stress is the root of all evil‘ thing.

I would have liked to see if the decrease in positive affect and perceived happy events correlates with increased sadness. The authors say that “negative events were appraised as more unpleasant, more important, and more stressful by the depressed than by the healthy participants ” (p. 206), but, curiously, the  mood was assessed with ratings on the feeling anxious, irritated, restless, tense, guilty, irritable, easily distracted, and agitate, and not a single item on depression-iconic feelings: sad, empty, hopeless, worthless.

Nevertheless, it’s a good psychological study with in depth statistical analyses. I also found thought-provoking this paragraph: “The literature on mood changes in daily life is dominated by studies of daily hassles. The current results indicate that daily uplifts are also important determinants of mood, in both depressed and healthy people” (p. 209).

152 depression and lack of happy events - Copy

REFERENCE: Peeters F, Nicolson NA, Berkhof J, Delespaul P, & deVries M. (May 2003). Effects of daily events on mood states in major depressive disorder. Journal of Abnormal Psychology, 112(2):203-11. PMID: 12784829, DOI: 10.1037/0021-843X.112.2.203. ARTICLE

By Neuronicus, 4 May 2019

Epigenetics of BDNF in depression

Depression is the leading cause of disability worldwide, says the World Health Organization. The. The. I knew it was bad, but… ‘the’? More than 300 million people suffer from it worldwide and in many places fewer than 10% of these receive treatment. Lack of treatment is due to many things, from lack of access to healthcare to lack of proper diagnosis; and not in the least due to social stigma.

To complicate matters, the etiology of depression is still not fully elucidated, despite hundreds of thousand of experimental articles published out-there. Perhaps millions. But, because hundreds of thousands of experimental articles perhaps millions have been published, we know a helluva a lot about it than, say, 50 years ago. The enormous puzzle is being painstakingly assembled as we speak by scientists all over the world. I daresay we have a lot of pieces already, if not all at least 3 out of 4 corners, so we managed to build a not so foggy view of the general picture on the box lid. Here is one of the hottest pieces of the puzzle, one of those central pieces that bring the rabbit into focus.

Before I get to the rabbit, let me tell you about the corners. In the fifties people thought that depression is due to having too little neurotransmitters from the monoamine class in the brain. This thought did not arise willy-nilly, but from the observation that drugs that increase monoamine levels in the brain alleviate depression symptoms, and, correspondingly, drugs which deplete monoamines induce depression symptoms. A bit later on, the monoamine most culpable was found to be serotonin. All well and good, plenty of evidence, observational, correlational, causational, and mechanistic supporting the monoamine hypothesis of depression. But two more pieces of evidence kept nagging the researchers. The first one was that the monoamine enhancing drugs take days to weeks to start working. So, if low on serotonin is the case, then a selective serotonin reuptake inhibitor (SSRI) should elevate serotonin levels within maximum an hour of ingestion and lower symptom severity, so how come it takes weeks? The second was even more eyebrow raising: these monoamine-enhancing drugs work in about 50 % of the cases. Why not all? Or, more pragmatically put, why not most of all if the underlying cause is the same?

It took decades to address these problems. The problem of having to wait weeks until some beneficial effects of antidepressants show up has been explained away, at least partly, by issues in the serotonin regulation in the brain (e.g. autoreceptors senzitization, serotonin transporter abnormalities). As for the second problem, the most parsimonious answer is that that archeological site called DSM (Diagnostic and Statistical Manual of Mental Disorders), which psychologists, psychiatrists, and scientists all over the world have to use to make a diagnosis is nothing but a garbage bag of last century relics with little to no resemblance of this century’s understanding of the brain and its disorders. In other words, what DSM calls major depressive disorder (MDD) may as well be more than one disorder and then no wonder the antidepressants work only in half of the people diagnosed with it. As Goldberg put it in 2011, “the DSM diagnosis of major depression is made when a patient has any 5 out of 9 symptoms, several of which are opposites [emphasis added]”! He was referring to DSM-4, not that the 5 is much different. I mean, paraphrasing Goldberg, you really don’t need much of a degree other than some basic intro class in the physiology of whatever, anything really, to suspect that someone who’s sleeping a lot, gains weight, has increased appetite, appears tired or slow to others, and feels worthless might have a different cause for these symptoms than someone who has daily insomnias, lost weight recently, has decreased appetite, is hyperagitated, irritable, and feels excessive guilt. Imagine how much more understanding we would have about depression if scientists didn’t use the DSM for research. No wonder that there’s a lot of head scratching when your hypothesis, which is logically correct, paradigmatically coherent, internally consistent, flawlessly tested, turns out to be true only sometimes because your ‘depressed’ subjects are as a homogeneous group as a pack of Trail Mix.

I got sidetracked again. This time ranting against DSM. No matter, I’m back on track. So. The good thing about the work done trying to figure out how antidepressants work and psychiatrists’ minds work (DSM is written overwhelmingly by psychiatrists), scientists uncovered other things about depression. Some of the findings became clumped under the name ‘the neurotrophic hypothesis of depression’ in the early naughts. It stems from the finding that some chemicals needed by neurons for their cellular happiness are in low amount in depression. Almost two decades later, the hypothesis became mainstream theory as it explains away some other findings in depression, and is not incompatible with the monoamines’ behavior. Another piece of the puzzle found.

One of these neurotrophins is called brain-derived neurotrophic factor (BDNF), which promotes cell survival and growth. Crucially, it also regulates synaptic plasticity, without which there would be no learning and no memory. The idea is that exposure to adverse events generates stress. Stress is differently managed by different people, largely due to genetic factors. In those not so lucky at the genetic lottery (how hard they take a stressor, how they deal with it), and in those lucky enough at genetics but not so lucky in life (intense and/or many stressors hit the organism hard regardless how well you take it or how good you are at it), stress kills a lot of neurons, literally, prevents new ones from being born, and prevents the remaining ones from learning well. Including learning on how to deal with the stressors, present and future, so the next time an adverse event happens, even if it is a minor stressor, the person is way more drastically affected. in other words, stress makes you more vulnerable to stressors. One of the ways stress is doing all these is by suppressing BDNF synthesis. Without BDNF, the individual exposed to stress that is exacerbated either by genes or environment ends up unable to self-regulate mood successfully. The more that mood is not regulated, the worse the brain becomes at self-regulating because the elements required for self-regulation, which include learning from experience, are busted. And so the vicious circle continues.

Maintaining this vicious circle is the ability of stressors to change the patterns of DNA expression and, not surprisingly, one of the most common findings is that the BDNF gene is hypermethylated in depression. Hypermethylation is an epigenetic change (a change around the DNA, not in the DNA itself), meaning that the gene in question is less expressed. This means lower amounts of BDNF are produced in depression.

After this long introduction, the today’s paper is a systematic review of one of epigenetic changes in depression: methylation. The 67 articles that investigated the role of methylation in depression were too heterogeneous to make a meta-analysis out of them, so Li et al. (2019) made a systematic review.

The main finding was that, overall, depression is associated with DNA methylation modifications. Two genes stood out as being hypermethylated: our friend BDNF and SLC6A4, a gene involved in the serotonin cycle. Now the question is who causes who: is stress methylating your DNA or does your methylated DNA make you more vulnerable to stress? There’s evidence both ways. Vicious circle, as I said. I doubt that for the sufferer it matters who started it first, but for the researchers it does.

151 bdnf 5htt people - Copy

A little disclaimer: the picture I painted above offers a non-exclusive view on the causes of depression(s). There’s more. There’s always more. Gut microbes are in the picture too. And circulatory problems. And more. But the picture is more than half done, I daresay. Continuing my puzzle metaphor, we got the rabbit by the ears. Now what to do with it…

Well, one thing we can do with it, even with only half-rabbit done, is shout loud and clear that depression is a physical disease. And those who claim it can be cured by a positive attitude and blame the sufferers for not ‘trying hard enough’ or not ‘smiling more’ or not ‘being more positive’ can bloody well shut up and crawl back in the medieval cave they came from.

REFERENCES:

1. Li M, D’Arcy C, Li X, Zhang T, Joober R, & Meng X (4 Feb 2019). What do DNA methylation studies tell us about depression? A systematic review. Translational Psychiatry, 9(1):68. PMID: 30718449, PMCID: PMC6362194, DOI: 10.1038/s41398-019-0412-y. ARTICLE | FREE FULLTEXT PDF

2. Goldberg D (Oct 2011). The heterogeneity of “major depression”. World Psychiatry, 10(3):226-8. PMID: 21991283, PMCID: PMC3188778. ARTICLE | FREE FULLTEXT PDF

3. World Health Organization Depression Fact Sheet

By Neuronicus, 23 April 2019

High fructose corn syrup IS bad for you

Because I cannot leave controversial things well enough alone – at least not when I know there shouldn’t be any controversy – my ears caught up with my tongue yesterday when the latter sputtered: “There is strong evidence for eliminating sugar from commonly used food products like bread, cereal, cans, drinks, and so on, particularly against that awful high fructose corn syrup”. “Yeah? You “researched” that up, haven’t you? Google is your bosom friend, ain’t it?” was the swift reply. Well, if you get rid of the ultra-emphatic air-quotes flanking the word ‘researched’ and replace ‘Google’ with ‘Pubmed’, then, yes, I did researched it and yes, Pubmed is my bosom friend.

Initially, I wanted to just give you all a list with peer-reviewed papers that found causal and/or correlational links between high fructose corn syrup (HFCS) and weight gain, obesity, type 2 diabetes, cardiovascular disease, fatty liver disease, metabolic and endocrine anomalies and so on. But there are way too many of them; there are over 500 papers on the subject in Pubmed only. And most of them did find that HFCS does nasty stuff to you, look for yourselves here. Then I thought to feature a paper showing that HFCS is differently metabolized than the fructose from fruits, because I keep hearing that lie perpetrated by the sugar and corn industries that “sugar is sugar” (no, it’s not! Demonstrably so!), but I doubt my yesterday’s interlocutor would care about liver’s enzymatic activity and other chemical processes with lots of acronyms. So, finally, I decided to feature a straight forward, no-nonsense paper, published recently, done at a top tier university, with human subjects, so I won’t hear any squabbles.

Price et al. (2018) studied 49 healthy subjects aged age 18–40 yr, of normal and stable body weight, and free from confounding medications or drugs, whose physical activity and energy-balanced meals were closely monitored. During the study, the subjects’ food and drink intake as well as their timing were rigorously controlled. The researchers varied only the beverages between groups, in such a way that one group received a drink sweetened with HFCS-55 (55% fructose, 45% glucose, as the one used in commercially available drinks) with every controlled meal, whereas the other group received an identical drink in size (adjusted for their energy requirements in such a way that it provided the same 25% of it), but sweetened with aspartame. The study lasted two weeks. No other beverage was allowed, including fruit juice. Urine samples were collected daily and blood samples 4 times per day.

There was a body weight increase of 810 grams (1.8 lb) in subjects consuming HFCS-sweetened beverages for 2 weeks when compared with aspartame controls. The researches also found differences in the levels of a whole host of acronyms (ppTG, ApoCIII, ApoE, OEA, DHEA, DHG, if you must know) involved in a variety of nasty things, like obesity, fatty liver disease, atherosclerosis, cardiovascular disease, stroke, diabetes, even Alzheimer’s.

This study is the third part of a larger NIH-funded study which investigates the metabolic effects of consuming sugar-sweetened beverages in about 200 participants over 5 years, registered at clinicaltrials.gov as NCT01103921. The first part (Stanhope et al., 2009) reported that consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans” (title), and the second part (Stanhope et al., 2015) found that “consuming beverages containing 10%, 17.5%, or 25% of energy requirements from HFCS produced dose-dependent increases in circulating lipid/lipoprotein risk factors for cardiovascular disease and uric acid within 2 weeks” (Abstract). They also found a dose-dependant increase in body weight, but in those subjects the results were not statistically significant (p = 0.09) after correcting for multiple comparisons. But I’ll bet that if/when the authors will publish all the data in one paper at the end of clinical trials they will have more statistical power and the trend in weight gain more obvious, as in the present paper.  Besides, it looks like there may be more than three parts to this study anyway.

The adverse effects of a high sugar diet, particularly in HFCS, are known to so many researchers in the field that they have been actually compiled in a name: the “American Lifestyle-Induced Obesity Syndrome model, which included consumption of a high-fructose corn syrup in amounts relevant to that consumed by some Americans” (Basaranoglu et al., 2013). It doesn’t refer only to increases in body weight, but also type 2 diabetes, cardiovascular disease, hypertriglyceridemia, fatty liver disease, atherosclerosis, gout, etc.

The truly sad part is that avoiding added sugars in diets in USA is impossible unless you do all – and I mean all – your cooking home, including canning, jamming, bread-making, condiment-making and so on, not just “Oh, I’ll cook some chicken or ham tonight” because in that case you end up using canned tomato sauce (which has added sugar), bread crumbs (which have added sugar), or ham (which has added sugar), salad dressing (which has sugar) and so on. Go on, check your kitchen and see how many ingredients have sugar in them, including any meat products short of raw meat. If you never read the backs of the bottles, cans, or packages, oh my, are you in for a big surprise if you live in USA…

There are lot more studies out there on the subject, as I said, of various levels of reading difficulty. This paper is not easy to read for someone outside the field, that’s for sure. But the main gist of it is in the abstract, for all to see.

150 hfcs - Copy

P.S. 1. Please don’t get me wrong: I am not against sugar in desserts, let it be clear. Nobody makes a more mean sweetalicious chocolate cake or carbolicious blueberry muffin than me, as I have been reassured many times. But I am against sugar in everything. You know I haven’t found in any store, including high-end and really high-end stores a single box of cereal of any kind without sugar? Just for fun, I’d like to be a daredevil and try it once. But there ain’t. Not in USA, anyway. I did find them in EU though. But I cannot keep flying over the Atlantic in the already crammed at premium luggage space unsweetened corn flakes from Europe which are probably made locally, incidentally and ironically, with good old American corn.

P.S. 2 I am not so naive, blind, or zealous to overlook the studies that did not find any deleterious effects of HFCS consumption. Actually, I was on the fence about HFCS until about 10 years ago when the majority of papers (now overwhelming majority) was showing that HFCS consumption not only increases weight gain, but it can also lead to more serious problems like the ones mentioned above. Or the few papers that say all added sugar is bad, but HFCS doesn’t stand out from the other sugars when it comes to disease or weight gain. But, like with most scientific things, the majority has it its way and I bow to it democratically until the new paradigm shift. Besides, the exposés of Kearns et al. (2016a, b, 2017) showing in detail and with serious documentation how the sugar industry paid prominent researchers for the past 50 years to hide the deleterious effects of added sugar (including cancer!) further cemented my opinion about added sugar in foods, particularly HFCS.

References:

  1. Price CA, Argueta DA, Medici V, Bremer AA, Lee V, Nunez MV, Chen GX, Keim NL, Havel PJ, Stanhope KL, & DiPatrizio NV (1 Aug 2018, Epub 10 Apr 2018). Plasma fatty acid ethanolamides are associated with postprandial triglycerides, ApoCIII, and ApoE in humans consuming a high-fructose corn syrup-sweetened beverage. American Journal of Physiology. Endocrinology and Metabolism, 315(2): E141-E149. PMID: 29634315, PMCID: PMC6335011 [Available on 2019-08-01], DOI: 10.1152/ajpendo.00406.2017. ARTICLE | FREE FULTEXT PDF
  1. Stanhope KL1, Medici V2, Bremer AA2, Lee V2, Lam HD2, Nunez MV2, Chen GX2, Keim NL2, Havel PJ (Jun 2015, Epub 22 Apr 2015). A dose-response study of consuming high-fructose corn syrup-sweetened beverages on lipid/lipoprotein risk factors for cardiovascular disease in young adults. The American Journal of Clinical Nutrition, 101(6):1144-54. PMID: 25904601, PMCID: PMC4441807, DOI: 10.3945/ajcn.114.100461. ARTICLE | FREE FULTEXT PDF
  1. Stanhope KL1, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, Hatcher B, Cox CL, Dyachenko A, Zhang W, McGahan JP, Seibert A, Krauss RM, Chiu S, Schaefer EJ, Ai M, Otokozawa S, Nakajima K, Nakano T, Beysen C, Hellerstein MK, Berglund L, Havel PJ (May 2009, Epub 20 Apr 2009). Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. The Journal of Clinical Investigation,119(5):1322-34. PMID: 19381015, PMCID: PMC2673878, DOI:10.1172/JCI37385. ARTICLE | FREE FULTEXT PDF

(Very) Selected Bibliography:

Bocarsly ME, Powell ES, Avena NM, Hoebel BG. (Nov 2010, Epub 26 Feb 2010). High-fructose corn syrup causes characteristics of obesity in rats: increased body weight, body fat and triglyceride levels. Pharmacology, Biochemistry, and Behavior, 97(1):101-6. PMID: 20219526, PMCID: PMC3522469, DOI: 10.1016/j.pbb.2010.02.012. ARTICLE | FREE FULLTEXT PDF

Kearns CE, Apollonio D, Glantz SA (21 Nov 2017). Sugar industry sponsorship of germ-free rodent studies linking sucrose to hyperlipidemia and cancer: An historical analysis of internal documents. PLoS Biology, 15(11):e2003460. PMID: 29161267, PMCID: PMC5697802, DOI: 10.1371/journal.pbio.2003460. ARTICLE | FREE FULTEXT PDF

Kearns CE, Schmidt LA, Glantz SA (1 Nov 2016). Sugar Industry and Coronary Heart Disease Research: A Historical Analysis of Internal Industry Documents. JAMA Internal Medicine, 176(11):1680-1685. PMID: 27617709, PMCID: PMC5099084, DOI: 10.1001/jamainternmed.2016.5394. ARTICLE | FREE FULTEXT PDF

Mandrioli D, Kearns CE, Bero LA (8 Sep 2016). Relationship between Research Outcomes and Risk of Bias, Study Sponsorship, and Author Financial Conflicts of Interest in Reviews of the Effects of Artificially Sweetened Beverages on Weight Outcomes: A Systematic Review of Reviews. PLoS One, 11(9):e0162198.PMID: 27606602, PMCID: PMC5015869, DOI: 10.1371/journal.pone.0162198. ARTICLE | FREE FULTEXT PDF

By Neuronicus, 22 March 2019

Yet another experiment showing that conscious “decisions” are made unconsciously, and in advance

It’s a well done summary of a newer paper on the lines of Libet’s 1983 that I covered in “The FIRSTS: brain active before conscious intent (1983)

Why Evolution Is True

In the last few years, neuroscience experiments have shown that some “conscious decisions” are actually made in the brain before the actor is conscious of them:  brain-scanning techniques can predict not only when a binary decision will be made, but what it will be (with accuracy between 55-70%)—several seconds before the actor reports being conscious of having made a decision.  The implications of this research are obvious: by the time we’re conscious of having made a “choice”, that choice has already been made for us—by our genes and our environments—and the consciousness is merely reporting something determined beforehand in the brain.  And that, in turn, suggests (as I’ve mentioned many times here) that all of our “choices” are really determined in advance, though some choices (e.g., whether to duck when a baseball is thrown at your head) can’t be made very far in advance!

Most readers here accept that our…

View original post 1,601 more words

Love and the immune system

Valentine’s day is a day when we celebrate romantic love (well, some of us tend to) long before the famous greeting card company Hallmark was established. Fittingly, I found the perfect paper to cover for this occasion.

In the past couple of decades it became clear to scientists that there is no such thing as a mental experience that doesn’t have corresponding physical changes. Why should falling in love be any different? Several groups have already found that levels of some chemicals (oxytocin, cortisol, testosterone, nerve growth factor, etc.) change when we fall in love. There might be other changes as well. So Murray et al. (2019) decided to dive right into it and check how the immune system responds to love, if at all.

For two years, the researchers looked at certain markers in the immune system of 47 women aged 20 or so. They drew blood when the women reported to be “not in love (but in a new romantic relationship), newly in love, and out-of-love” (p. 6). Then they sent their samples to their university’s Core to toil over microarrays. Microarray techniques can be quickly summarized thusly: get a bunch of molecules of interest, in this case bits of single-stranded DNA, and stick them on a silicon plate or a glass slide in a specific order. Then you run your sample over it and what sticks, sticks, what not, not. Remember that DNA loves to be double stranded, so any single strand will stick to their counterpart, called complementary DNA. You put some fluorescent dye on your genes of interest and voilà, here you have an array of genes expressed in a certain type of tissue in a certain condition.

Talking about microarrays got me a bit on memory lane. When fMRI started to be a “must” in neuroscience, there followed a period when the science “market” was flooded by “salad” papers. We called them that because there were so many parts of the brain reported as “lit up” in a certain task that it made a veritable “salad of brain parts” out of which it was very difficult to figure out what’s going on. I swear that now that the fMRI field matured a bit and learned how to correct for multiple comparisons as well as to use some other fancy stats, the place of honor in the vegetable mix analogy has been relinquished to the ‘-omics’ studies. In other words, a big portion of the whole-genome or transcriptome studies became “salad” studies: too many things show up as statistically significant to make head or tail of it.

However, Murray et al. (2019) made a valiant – and successful – effort to figure out what those up- or down- regulated 61 gene transcripts in the immune system cells of 17 women falling in love actually mean. There’s quite a bit I am leaving out but, in a nutshell, love upregulated (that is “increased”) the expressions of genes involved in the innate immunity to viruses, presumably to facilitate sexual reproduction, the authors say.

The paper is well written and the authors graciously remind us that there are some limitations to the study. Nevertheless, this is another fine addition to the unbelievably fast growing body of knowledge regarding human body and behavior.

Pitty that this research was done only with women. I would have loved to see how men’s immune systems respond to falling in love.

149-love antiviral - Copy.jpg

REFERENCE: Murray DR, Haselton MG, Fales M, & Cole SW. (Feb 2019, Epub 2 Oct 2018). Falling in love is associated with immune system gene regulation. Psychoneuroendocrinology, Vol. 100, Pg. 120-126. doi: 10.1016/j.psyneuen.2018.09.043. PMID: 30299259, PMCID: PMC6333523 [Available on 2020-02-01], DOI: 10.1016/j.psyneuen.2018.09.043 ARTICLE

FYI: PMC6333523 [Available on 2020-02-01] means that the fulltext will be available for free to the public one year after the publication on the US governmental website PubMed (https://www.ncbi.nlm.nih.gov/pubmed/), no matter how much Elsevier will charge for it. Always, always, check the PMC library (https://www.ncbi.nlm.nih.gov/pmc/) on PubMed to see if a paper you saw in Nature or Elsevier is for free there because more often than you’d think it is.

PubMed = the U.S. National Institutes of Health’s National Library of Medicine (NIH/NLM), comprising of “more than 29 million citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites” .

PMC = “PubMed Central® (PMC) is a free fulltext archive of biomedical and life sciences journal literature at the U.S. National Institutes of Health’s National Library of Medicine (NIH/NLM)” with a whooping fulltext library of over 5 million papers and growing rapidly. Love PubMed!

By Neuronicus, 14 February 2019

Milk-producing spider

In biology, organizing living things in categories is called taxonomy. Such categories are established based on shared characteristics of the members. These characteristics were usually visual attributes. For example, a red-footed booby (it’s a bird, silly!) is obviously different than a blue-footed booby, so we put them in different categories, which Aristotle called in Greek something like species.

Biological taxonomy is very useful, not only to provide countless hours of fight (both verbal and physical!) for biologists, but to inform us of all sorts of unexpected relationships between living things. These relationships, in turn, can give us insights into our own evolution, but also the evolution of things inimical to us, like diseases, and, perhaps, their cure. Also extremely important, it allows scientists from all over the world to have a common language, thus maximizing information sharing and minimizing misunderstandings.

148-who Am I - Copy

All well and good. And it was all well and good since Carl Linnaeus introduced his famous taxonomy system in the 18th Century, the one we still use today with species, genus, family, order, and kingdom. Then we figured out how to map the DNAs of things around us and this information threw out the window a lot of Linnean classifications. Because it turns out that some things that look similar are not genetically similar; likewise, some living things that we thought are very different from one another, turned out that, genetically speaking, they are not so different.

You will say, then, alright, out with visual taxonomy, in with phylogenetic taxonomy. This would be absolutely peachy for a minority of organisms of the planet, like animals and plants, but a nightmare in the more promiscuous organisms who have no problem swapping bits of DNA back and forth, like some bacteria, so you don’t know anymore who’s who. And don’t even get me started on the viruses which we are still trying to figure out whether or not they are alive in the first place.

When I grew up there were 5 regna or kingdoms in our tree of life – Monera, Protista, Fungi, Plantae, Animalia – each with very distinctive characteristics. Likewise, the class Mammalia from the Animal Kingdom was characterized by the females feeding their offspring with milk from mammary glands. Period. No confusion. But now I have no idea (nor do many other biologists, rest assured) how many domains or kingdoms or empires we have, nor even what the definition of a species is anymore.

As if that’s not enough, even those Linnean characteristics that we thought set in stone are amenable to change. Which is good, shows the progress of science. But I didn’t think that something like the definition of mammal would change. Mammals are organisms whose females feed their offspring with milk from mammary glands, as I vouchsafed above. Pretty straightforward. And not spiders. Let me be clear on this: spiders did not feature in my – or anyone’s! – definition of mammals.

Until Chen et al. (2018) published their weird article a couple of weeks ago. The abstract is free for all to see and states that the females of a jumping spider species feed their young with milk secreted by their body until the age of subadulthood. Mothers continue to offer parental care past the maturity threshold. The milk is necessary for the spiderlings because without it they die. That’s all.

I read the whole paper since it was only 4 pages of it and here are some more details about their discovery. The species of spider they looked at is Toxeus magnus, a jumping spider that looks like an ant. The mother produces milk from her epigastric furrow and deposits it on the nest floor and walls from where the spiderlings ingest it (0-7 days). After the first week of this, the spiderlings suck the milk direct from the mother’s body and continue to do so for the next two weeks (7-20 days) when they start leaving the nest and forage for themselves. But they return and for the next period (20-40 days) they get their food both from the mother’s milk and from independent foraging. Spiderlings get weaned by day 40, but they still come home to sleep at night. At day 52 they are officially considered adults. Interestingly, “although the mother apparently treated all juveniles the same, only daughters were allowed to return to the breeding nest after sexual maturity. Adult sons were attacked if they tried to return. This may reduce inbreeding depression, which is considered to be a major selective agent for the evolution of mating systems (p. 1053).”

During all this time, including during the emergence into adulthood of the offsprings, the mother also supplied house maintenance, carrying out her children’s exuviae (shed exoskeletons) and repairing the nest.

The authors then did a series of experiments to see what role does the nursing and other maternal care at different stages play in the fitness and survival of the offsprings. Blocking the mother’s milk production with correction fluid immediately after hatching killed all the spiderlings, showing that they are completely dependent on the mother’s milk. Removing the mother after the spiderlings start foraging (day 20) drastically reduces survivorship and body size, showing that mother’s care is essential for her offsprings’ success. Moreover, the mother taking care of the nest and keeping it clean reduced the occurrence of parasite infections on the juveniles.

The authors analyzed the milk and it’s highly nutritious: “spider milk total sugar content was 2.0 mg/ml, total fat 5.3 mg/ml, and total protein 123.9 mg/ml, with the protein content around four times that of cow’s milk (p. 1053)”.

Speechless I am. Good for the spider, I guess. Spider milk will have exorbitant costs (Apparently, a slight finger pressure on the milk-secreting region makes the mother spider secret the milk, not at all unlike the human mother). Spiderlings die without the mother’s milk. Responsible farming? Spider milker qualifications? I’m gonna lay down, I got a headache.

148 spider milk - Copy

REFERENCE: Chen Z, Corlett RT, Jiao X, Liu SJ, Charles-Dominique T, Zhang S, Li H, Lai R, Long C, & Quan RC (30 Nov. 2018). Prolonged milk provisioning in a jumping spider. Science, 362(6418):1052-1055. PMID: 30498127, DOI: 10.1126/science.aat3692. ARTICLE | Supplemental info (check out the videos)

By Neuronicus, 13 December 2018

Pic of the day: Dopamine from a non-dopamine place

147 lc da ppvn - Copy

Reference: Beas BS, Wright BJ, Skirzewski M, Leng Y, Hyun JH, Koita O, Ringelberg N, Kwon HB, Buonanno A, & Penzo MA (Jul 2018, Epub 18 Jun 2018). The locus coeruleus drives disinhibition in the midline thalamus via a dopaminergic mechanism. Nature Neuroscience,21(7):963-973. PMID: 29915192, PMCID: PMC6035776 [Available on 2018-12-18], DOI:10.1038/s41593-018-0167-4. ARTICLE

Pooping Legos

Yeah, alright… uhm… how exactly should I approach this paper? I’d better just dive into it (oh boy! I shouldn’t have said that).

The authors of this paper were adult health-care professionals in the pediatric field. These three males and three females were also the participants in the study. They kept a poop-diary noting the frequency and volume of bowel movements (Did they poop directly on a scale or did they have to scoop it out in a bag?). The researchers/subjects developed a Stool Hardness and Transit (SHAT) metric to… um.. “standardize bowel habit between participants” (p. 1). In other words, to put the participants’ bowel movements on the same level (please, no need to visualize, I am still stuck at the poop-on-a-scale phase), the authors looked – quite literally – at the consistency of the poop and gave it a rating. I wonder if they checked for inter-rater reliability… meaning did they check each other’s poops?…

Then the researchers/subjects ingested a Lego figurine head, on purpose, somewhere between 7 and 9 a.m. Then they timed how much time it took to exit. The FART score (Found and Retrieved Time) was 1.71 days. “There was some evidence that females may be more accomplished at searching through their stools than males, but this could not be statistically validated” due to the small sample size, if not the poops’. It took 1 to 3 stools for the object to be found, although poor subject B had to search through his 13 stools over a period of 2 weeks to no avail. I suppose that’s what you get if you miss the target, even if you have a PhD.

The pre-SHAT and SHAT score of the participants did not differ, suggesting that the Lego head did not alter the poop consistency (I got nothin’ here; the authors’ acronyms are sufficient scatological allusion). From a statistical standpoint, the one who couldn’t find his head in his poop (!) should not have been included in the pre-SHAT score group. Serves him right.

I wonder how they searched through the poop… A knife? A sieve? A squashing spatula? Gloved hands? Were they floaters or did the poop sink at the base of the toilet? Then how was it retrieved? Did the researchers have to poop in a bucket so no loss of data should occur? Upon direct experimentation 1 minute ago, I vouchsafe that a Lego head is completely buoyant. Would that affect the floatability of the stool in question? That’s what I’d like to know. Although, to be fair, no, that’s not what I want to know; what I desire the most is a far larger sample size so some serious stats can be conducted. With different Lego parts. So they can poop bricks. Or, as suggested by the authors, “one study arm including swallowing a Lego figurine holding a coin” (p. 3) so one can draw parallels between Lego ingestion and coin ingestion research, the latter being, apparently, far more prevalent. So many questions that still need to be answered! More research is needed, if only grants would be so… regular as the raw data.

The paper, albeit short and to the point, fills a gap in our scatological knowledge database (Oh dear Lord, stop me!). The aim of the paper was to show that ingested objects by children tend to pass without a problem. Also of value, the paper asks pediatricians to counsel the parents to not search for the object in the faeces to prove object retrieval because “if an experienced clinician with a PhD is unable to adequately find objects in their own stool, it seems clear that we should not be expecting parents to do so” (p. 3). Seems fair.

146 lego poop - Copy

REFERENCE: Tagg, A., Roland, D., Leo, G. S., Knight, K., Goldstein, H., Davis, T. and Don’t Forget The Bubbles (22 November 2018). Everything is awesome: Don’t forget the Lego. Journal of Paediatrics and Child Health, doi: 10.1111/jpc.14309. ARTICLE

By Neuronicus, 27 November 2017

Apathy

Le Heron et al. (2018) defines apathy as a marked reduction in goal-directed behavior. But in order to move, one must be motivated to do so. Therefore, a generalized form of impaired motivation also hallmarks apathy.

The authors compiled for us a nice mini-review combing through the literature of motivation in order to identify, if possible, the neurobiological mechanism(s) of apathy. First, they go very succinctly though the neuroscience of motivated behavior. Very succinctly, because there are literally hundreds of thousands of worthwhile pages out there on this subject. Although there are several other models proposed out-there, the authors’ new model on motivation includes the usual suspects (dopamine, striatum, prefrontal cortex, anterior cingulate cortex) and you can see it in the Fig. 1.

145 apathy 1 - Copy
Fig. 1 from Le Heron et al. (2018). The red underlining is mine because I really liked how well and succinctly the authors put a universal truth about the brain: “A single brain region likely contributes to more than one process, but with specialisation”. © Author(s) (or their employer(s)) 2018.

After this intro, the authors go on to showcasing findings from the effort-based decision-making field, which suggest that the dopamine-producing neurons from ventral tegmental area (VTA) are fundamental in choosing an action that requires high-effort for high-reward versus a low-effort for low-reward. Contrary to what Wikipedia tells you, a reduction, not an increase, in mesolimbic dopamine is associated with apathy, i.e. preferring a low-effort for low-reward activity.

Next, the authors focus on why are the apathetic… apathetic? Basically, they asked the question: “For the apathetic, is the reward too little or is the effort too high?” By looking at some cleverly designed experiments destined to parse out sensitivity to reward versus sensitivity to effort costs, the authors conclude that the apathetics are indeed sensitive to the reward, meaning they don’t find the rewards good enough for them to move.  Therefore, the answer is the reward is too little.

In a nutshell, apathetic people think “It’s not worth it, so I’m not willing to put in the effort to get it”. But if somehow they are made to judge the reward as good enough, to think “it’s worth it”, they are willing to work their darndest to get it, like everybody else.

The application of this is that in order to get people off the couch and do stuff you have to present them a reward that they consider worth moving for, in other words to motivate them. To which any practicing psychologist or counselor would say: “Duh! We’ve been saying that for ages. Glad that neuroscience finally caught up”.  Because it’s easy to say people need to get motivated, but much much harder to figure out how.

This was a difficult write for me and even I recognize the quality of this blogpost as crappy. That’s because, more or less, this paper is within my narrow specialization field. There are points where I disagree with the authors (some definitions of terms), there are points where things are way more nuanced than presented (dopamine findings in reward), and finally there are personal preferences (the interpretation of data from Parkinson’s disease studies). Plus, Salamone (the second-to-last author) is a big name in dopamine research, meaning I’m familiar with his past 20 years or so worth of publications, so I can infer certain salient implications (one dopamine hypothesis is about saliency, get it?).

It’s an interesting paper, but it’s definitely written for the specialist. Hurray (or boo, whatever would be your preference) for another model of dopamine function(s).

REFERENCE: Le Heron C, Holroyd CB, Salamone J, & Husain M (26 Oct 2018, Epub ahead of print). Brain mechanisms underlying apathy. Journal of Neurology, Neurosurgery & Psychiatry. pii: jnnp-2018-318265. doi: 10.1136/jnnp-2018-318265. PMID: 30366958 ARTICLE | FREE FULLTEXT PDF

By Neuronicus, 24 November 2018

No licorice for you

I never liked licorice. And that turns out to be a good thing. Given that Halloween just happened yesterday and licorice candy is still sold in USA, I remembered the FDA’s warning against consumption of licorice from a year ago.

So I dug out the data supporting this recommendation. It’s a review paper published 6 years ago by Omar et al. (2012) meant to raise awareness of the risks of licorice consumption and to urge FDA to take regulatory steps.

The active ingredient in licorice is glycyrrhizic acid. This is hydrolyzed to glycyrrhetic acid by intestinal bacteria possessing a specialized ß-glucuronidase. Glycyrrhetic acid, in turn, inhibits 11-ß-hydroxysteroid dehydrogenase (11-ß-HSD) which results in cortisol activity increase, which binds to the mineralcorticoid receptors in the kidneys, leading to low potassium levels (called hypokalemia). Additionally, licorice components can also bind directly to the mineralcorticoid receptors.

Eating 2 ounces of black licorice a day for at least two weeks (which is roughly equivalent to 2 mg/kg/day of pure glycyrrhizinic acid) is enough to produce disturbances in the following systems:

  • cardiovascular (hypertension, arrhythmias, heart failure, edemas)
  • neurological (stroke, myoclonia, ocular deficits, Carpal tunnel, muscle weakness)
  • renal (low potassium, myoglobinuria, alkalosis)
  • and others

144 licorice - Copy

Although everybody is affected by licorice consumption, the most vulnerable populations are those over 40 years old, those who don’t poop every day, or are hypertensive, anorexic or of the female persuasion.

Unfortunately, even if one doesn’t enjoy licorice candy, they still can consume it as it is used as a sweetener or flavoring agent in many foods, like sodas and snacks. It is also used in naturopathic crap, herbal remedies, and other dangerous scams of that ilk. So beware of licorice and read the label, assuming the makers label it.

144 licorice products - Copy
Licorice products (Images: PD, Collage: Neuronicus)

REFERENCE: Omar HR, Komarova I, El-Ghonemi M, Fathy A, Rashad R, Abdelmalak HD, Yerramadha MR, Ali Y, Helal E, & Camporesi EM. (Aug 2012). Licorice abuse: time to send a warning message. Therapeutic Advances in Endocrinology and Metabolism, 3(4):125-38. PMID: 23185686, PMCID: PMC3498851, DOI: 10.1177/2042018812454322. ARTICLE | FREE FULLTEXT PDF

By Neuronicus, 1 November 2018

Raising a child costs 13 million calories

That’s right. Somebody actually did the math on that. Kaplan in 1994, to be exact.

The anthropologist and his colleague, Kate Kopischke, looked at how three semi-isolated populations from South America live. Between September 1988 and May 1989, the researchers analyzed several variables meant to shed light mainly on fertility rate and wealth flow. They measured the amount of time spent taking care of children. They estimated the best time to have a second child. They weighed the food of these communities. And then they estimated the caloric intake and expenditure per day per individual.

Human children are unable to provision for themselves until about the age of 18. So most of their caloric intake requirements are provided by their parents. Long story (39 pages) short, Kaplan (1994) concluded that a child relies on 13 million calories provided by the adults. Granted, these are mostly hunter-gatherer communities, so the number may be a bit off from your average American child. The question is: which way? Do American kids “cost” more or less?

143 13 mil calories - Copy

P.S. I was reading a paper, Kohl (2018), in the last week’s issue of Science that quoted this number, 13 million. When I went to the cited source, Hrdy (2016), that one was citing yet another one, the above-mentioned Kaplan (1994) paper. Luckily for Kohl, Hrdy cited Kaplan correctly. But I must tell you from my own experience, half of the time when people cite other people citing other people citing original research, they are wrong. Meaning that somewhere in the chain somebody got it wrong or twisted the original research finding for their purposes. Half of the time, I tell you. People don’t go for the original material because it can be a hassle to dig it out, or it’s hard to read, or because citing a more recent paper looks better in the review process. But that comes to the risk of being flat wrong. The moral: always, always, go for the source material.

P.P.S. To be clear, I’m not accusing Kohl of not reading Kaplan because accusing an academic of citing without reading or being unfamiliar with seminal research in their field (that is, seminal in somebody else’s opinion) is a tremendous insult not be wielded lightly by bystanders but to be viciously used only for in-house fights on a regular basis. No. I’m saying that Kohl got that number second-hand and that’s frowned upon. The moral: always, always, go for the source material. I can’t emphasize this enough.

P.P.P..S. Ah, forget it. P.S. 3. Upon reading my blog, my significant other’s first question was: “Well, how much is that in potatoes?” I had to do the math on a Post-It and the answer is: 50,288 large skinless potatoes, boiled without salt. That’s 15,116 Kg of potatoes, more than 15 metric tones. Here you go. Happy now? Why are we talking about potatoes?! No, I don’t know how many potatoes would fit into a house. Jeez!

REFERENCE: Kaplan, H. (Dec. 1994). Evolutionary and Wealth Flows Theories of Fertility: Empirical Tests and New Models. Population and Development Review, Vol. 20, No. 4, pp. 753-791. DOI: 10.2307/2137661. ARTICLE

By Neuronicus, 22 October 2018

Locus Coeruleus in mania

From all the mental disorders, bipolar disorder, a.k.a. manic-depressive disorder, has the highest risk for suicide attempt and completion. If the thought of suicide crosses your mind, stop reading this, it’s not that important; what’s important is for you to call the toll-free National Suicide Prevention Lifeline at 1-800-273-TALK (8255).

The bipolar disorder is defined by alternating manic episodes of elevated mood, activity, excitation, and energy with episodes of depression characterized by feelings of deep sadness, hopelessness, worthlessness, low energy, and decreased activity. It is also a more common disease than people usually expect, affecting about 1% or more of the world population. That means almost 80 million people! Therefore, it’s imperative to find out what’s causing it so we can treat it.

Unfortunately, the disease is very complex, with many brain parts, brain chemicals, and genes involved in its pathology. We don’t even fully comprehend how the best medication we have to lower the risk of suicide, lithium, works. The good news is the neuroscientists haven’t given up, they are grinding at it, and with every study we get closer to subduing this monster.

One such study freshly published last month, Cao et al. (2018), looked at a semi-obscure membrane protein, ErbB4. The protein is a tyrosine kinase receptor, which is a bit unfortunate because this means is involved in ubiquitous cellular signaling, making it harder to find its exact role in a specific disorder. Indeed, ErbB4 has been found to play a role in neural development, schizophrenia, epilepsy, even ALS (Lou Gehrig’s disease).

Given that ErbB4 is found in some neurons that are involved in bipolar and mutations in its gene are also found in some people with bipolar, Cao et al. (2018) sought to find out more about it.

First, they produced mice that lacked the gene coding for ErbB4 in neurons from locus coeruleus, the part of the brain that produces norepinephrine out of dopamine, better known for the European audience as nor-adrenaline. The mutant mice had a lot more norepinephrine and dopamine in their brains, which correlated with mania-like behaviors. You might have noticed that the term used was ‘manic-like’ and not ‘manic’ because we don’t know for sure how the mice feel; instead, we can see how they behave and from that infer how they feel. So the researchers put the mice thorough a battery of behavioral tests and observed that the mutant mice were hyperactive, showed less anxious and depressed behaviors, and they liked their sugary drink more than their normal counterparts, which, taken together, are indices of mania.

Next, through a series of electrophysiological experiments, the scientists found that the mechanism through which the absence of ErbB4 leads to mania is making another receptor, called NMDA, in that brain region more active. When this receptor is hyperactive, it causes neurons to fire, releasing their norepinephrine. But if given lithium, the mutant mice behaved like normal mice. Correspondingly, they also had a normal-behaving NMDA receptor, which led to normal firing of the noradrenergic neurons.

So the mechanism looks like this (Jargon alert!):

No ErbB4 –> ↑ NR2B NMDAR subunit –> hyperactive NMDAR –> ↑ neuron firing –> ↑ catecholamines –> mania.

In conclusion, another piece of the bipolar puzzle has been uncovered. The next obvious step will be for the researchers to figure out a medicine that targets ErbB4 and see if it could treat bipolar disorder. Good paper!

142 erbb4 - Copy

P.S. If you’re not familiar with the journal eLife, go and check it out. The journal offers for every study a half-page summary of the findings destined for the lay audience, called eLife digest. I’ve seen this practice in other journals, but this one is generally very well written and truly for the lay audience and the non-specialist. Something of what I try to do here, minus the personal remarks and in parenthesis metacognitions that you’ll find in most of my posts. In short, the eLife digest is masterly done. As my continuous struggles on this blog show, it is tremendously difficult for a scientist to write concisely, precisely, and jargonless at the same time. But eLife is doing it. Check it out. Plus, if you care to take a look on how science is done and published, eLife publishes all the editor’s rejection notes, all the reviewers’ comments, and all the author responses for a particular paper. Reading those is truly a teaching moment.

REFERENCE: Cao SX, Zhang Y, Hu XY, Hong B, Sun P, He HY, Geng HY, Bao AM, Duan SM, Yang JM, Gao TM, Lian H, Li XM (4 Sept 2018). ErbB4 deletion in noradrenergic neurons in the locus coeruleus induces mania-like behavior via elevated catecholamines. Elife, 7. pii: e39907. doi: 10.7554/eLife.39907. PMID: 30179154 ARTICLE | FREE FULLTEXT PDF

By Neuronicus, 14 October 2018

The Global Warming IPCC 2018 Report

The Special Report on Global Warming of 1.5ºC (SR15) was published two days ago, on October 8th, 2018. The Report was written by The Intergovernmental Panel on Climate Change (IPCC), “which is the UN body for assessing the science related to climate change. It was established by the United Nations Environment Programme (UN Environment) and the World Meteorological Organization (WMO) in 1988 to provide policymakers with regular scientific assessments concerning climate change, its implications and potential future risks, as well as to put forward adaptation and mitigation strategies.” (IPCC Special Report on Global Warming of 1.5ºC, Press Release).

The Report’s findings are very bad. Its Summary for Policymakers starts with:

“Human activities are estimated to have caused approximately 1.0°C of global warming above pre-industrial levels, with a likely range of 0.8°C to 1.2°C. Global warming is likely to reach 1.5°C between 2030 and 2052 if it continues to increase at the current rate.”

That’s 12 years from now.

IPCC 2018 - Copy
Extract from the IPCC (2018), Global Warming of 1.5 ºC, Summary for Policymakers. “Observed monthly global mean surface temperature (GMST) change grey line up to 2017, from the HadCRUT4, GISTEMP, Cowtan – Way, and NOAA datasets) and estimated anthropogenic global warming (solid orange line up to 2017, with orange shading indicating assessed likely range). Orange dashed arrow and horizontal orange error bar show respectively central estimate and likely range of the time at which 1.5°C is reached if the current rate of warming continues. The grey plume on the right of  shows the likely range of warming responses, computed with a simple climate model, to a stylized pathway (hypothetical future) in which net CO2 emissions  decline in a straight line from 2020 to reach net zero in 2055 and net non – CO2 radiative forcing increases to 2030 and then declines. “

Which means that we warmed up the world by 1.0°C (1.8°F) since 1850-1900. Continuing the way we have been doing, we will add another 0.5°C (0.9°F) to the world temperature sometime between 2030 and 2052, making the total human-made global warming to 1.5°C (2.7°F).

That’s 12 years from now.

Half a degree Celsius doesn’t sound so bad until you look at the highly confident model prediction saying that gaining that extra 0.5°C (0.9°F) will result in terrible unseen before superstorms and precipitation in some regions while others will suffer prolonged droughts, along with extreme heat waves and sea level rises due to the melting of Antarctica. From a biota point of view, if we reach the 1.5°C (2.7°F) threshold, most of the coral reefs will become extinct, as well as thousands of other species (6% of insects, 8% of plants, and 4% of vertebrates).

That’s 12 years from now.

All these will end up increasing famine, homelessness, disease, inequality, poverty, and refugee numbers to unprecedented levels. Huge spending of money on infrastructure, rebuilding, help efforts, irrigation, water supplies, and so on, for those inclined to be more concerned by finances. To put it bluntly, a 1.5°C (2.7°F) increase in global warming costs us about $54 trillion.

That’s 12 years from now.

These effects will persist for centuries to millennia. To stay at the 1.5°C (2.7°F)  limit we need to reduce the carbon emissions by 50% by 2030 and achieve 0 emissions by 2050.

That’s 12 years from now.

The Report emphasizes that a 1.5°C (2.7°F)  increase is not as bad as a 2°C (3.6°F), where we will loose double of the biota, the storms will be worse, the droughts longer, and altogether a more catastrophic scenario.

Technically, we ARE ABLE to limit the warming at 1.5°C (2.7°F), If, by 2050, we rely on renewable energy, like solar and wind, to supply 70-85% of energy, we will be able to stay at the 1.5°C (2.7°F). Lower the coal use as energy source to single digits percentages. Expanding forests and implementing large CO2 capture programs would help tremendously. Drastically reduce carbon emissions by, for example, hitting polluters with crippling fines. But all this requires rapid implementation of heavy laws and regulation, which will come from a concentrated effort of our leaders.

Therefore, politically, we ARE UNABLE to limit the warming at 1.5°C (2.7°F). Instead, it’s very likely that we will warm the planet by 2°C (3.6°F) in the next decades. If we do nothing, by the end of the century the world will be even hotter, being warmed up by 3°C (5.4°F) and there are no happy scenarios then as the climate change will be beyond our control. That is, our children’s control.

141-ipcc hope - Copy

There are conspiracy theorists out there claiming that there are nefarious or hidden reasons behind this report, or that its conclusions are not credible, or that it’s not legit, or it’s bad science, or that it represents the view of a fringe group of scientists and does not reflect a scientific consensus. I would argue that people who claim such absurdities are either the ones with a hidden agenda or are plain idiots. Not ignorants, because ignorance is curable and whoever seeks to learn new things is to be admired. Not honest questioning either, because that is as necessary to science as the water to the fish. Willful ignorance, on the other hand, I call idiocy and is remarkably resistant to presentation of facts. FYI, the Report was conducted by a Panel commissioned by an organization comprising 195 countries, is authored by 91 scientists, has an additional 133 contributing authors, all these spanning 40 countries, analyzing over 6000 scientific studies. Oh, and the Panel received the 2007 Nobel Peace Prize. I daresay it looks legit. The next full climate assessment will be released in 2021.

141 Climate change - Copy

REFERENCES:

  1. The Intergovernmental Panel on Climate Change (IPCC) (2018). Global Warming of 1.5 ºC, an IPCC Special report on the impacts of global warming of 1.5 ºC above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Retrieved 10 October 2018Website  | Covers: New York Times | Nature  | The Washington Post | The Guardian | The Economist | ABC News | Deutsche Welle | CNN | HuffPost Canada| Los Angeles Times | BBC | Time .
  2. The IPCC Summary for Policymakers PDF
  3. The IPCC Press Release PDF
  4. The 2007 Nobel Peace Prize.

By Neuronicus, 10 October 2018

The Mom Brain

Recently, I read an opinion titled When I Became A Mother, Feminism Let Me Down. The gist of it was that some feminists, while empowering women and girls to be anything they want to be and to do anything a man or a boy does, they fail in uplifting the motherhood aspect of a woman’s life, should she choose to become a mother. In other words, even (or especially, in some cases) feminists look down on the women who chose to switch from a paid job and professional career to an unpaid stay-at-home mom career, as if being a mother is somehow beneath what a woman can be and can achieve. As if raising the next generation of humans to be rational, informed, well-behaved social actors instead of ignorant brutal egomaniacs is a trifling matter, not to be compared with the responsibilities and struggles of a CEO position.

Patriarchy notwithstanding, a woman can do anything a man can. And more. The ‘more’ refers to, naturally, motherhood. Evidently, fatherhood is also a thing. But the changes that happen in a mother’s brain and body during pregnancy, breastfeeding, and postpartum periods are significantly more profound than whatever happens to the most loving and caring and involved father.

Kim (2016) bundled some of these changes in a nice review, showing how these drastic and dramatic alterations actually have an adaptive function, preparing the mother for parenting. Equally important, some of the brain plasticity is permanent. The body might spring back into shape if the mother is young or puts into it a devilishly large amount of effort, but some brain changes are there to stay. Not all, though.

One of the most pervasive findings in motherhood studies is that hormones whose production is increased during pregnancy and postpartum, like oxytocin and dopamine, sensitize the fear circuit in the brain. During the second trimester of pregnancy and particularly during the third, expectant mothers start to be hypervigilent and hypersensitive to threats and to angry faces. A higher anxiety state is characterized, among other things, by preferentially scanning for threats and other bad stuff. Threats mean anything from the improbable tiger to the 1 in a million chance for the baby to be dropped by grandma to the slightly warmer forehead or the weirdly colored poopy diaper. The sensitization of the fear circuit, out of which the amygdala is an essential part, is adaptive because it makes the mother more likely to not miss or ignore her baby’s cry, thus attending to his or her needs. Also, attention to potential threats is conducive to a better protection of the helpless infant from real dangers. This hypersensitivity usually lasts 6 to 12 months after childbirth, but it can last lifetime in females already predisposed to anxiety or exposed to more stressful events than average.

Many new mothers worry if they will be able to love their child as they don’t feel this all-consuming love other women rave about pre- or during pregnancy. Rest assured ladies, nature has your back. And your baby’s. Because as soon as you give birth, dopamine and oxytocin flood the body and the brain and in so doing they modify the reward motivational circuit, making new mothers literally obsessed with their newborn. The method of giving birth is inconsequential, as no differences in attachment have been noted (this is from a different study). Do not mess with mother’s love! It’s hardwired.

Another change happens to the brain structures underlying social information processing, like the insula or fusiform gyrus, making mothers more adept at self-motoring, reflection, and empathy. Which is a rapid transformation, without which a mother may be less accurate in understanding the needs, mental state, and social cues of the very undeveloped ball of snot and barf that is the human infant (I said that affectionately, I promise).

In order to deal with all these internal changes and the external pressures of being a new mom the brain has to put up some coping mechanisms. (Did you know, non-parents, that for the first months of their newborn lives, the mothers who breastfeed must do so at least every 4 hours? Can you imagine how berserk with sleep deprivation you would be after 4 months without a single night of full sleep but only catnaps?). Some would be surprised to find out – not mothers, though, I’m sure – that “new mothers exhibit enhanced neural activation in the emotion regulation circuit including the anterior cingulate cortex, and the medial and lateral prefrontal cortex” (p. 50). Which means that new moms are actually better at controlling their emotions, particularly at regulating negative emotional reactions. Shocking, eh?

140 mom brain1 - Copy

Finally, it appears that very few parts of the brain are spared from this overhaul as the entire brain of the mother is first reduced in size and then it grows back, reorganized. Yeah, isn’t that weird? During pregnancy the brain shrinks, being at its lowest during childbirth and then starts to grow again, reaching its pre-pregnancy size 6 months after childbirth! And when it’s back, it’s different. The brain parts heavily involved in parenting, like the amygdala involved in the anxiety, the insula and superior temporal gyrus involved in social information processing and the anterior cingulate gyrus involved in emotional regulation, all these show increased gray matter volume. And many other brain structures that I didn’t list. One brain structure is rarely involved only in one thing so the question is (well, one of them) what else is changed about the mothers, in addition to their increased ability to parent?

I need to add a note here: the changes that Kim (2016) talks about are averaged. That means some women get changed more, some less. There is variability in plasticity, which should be a pleonasm. There is also variability in the human population, as any mother attending a school parents’ night-out can attest. Some mothers are paranoid with fear and overprotective, others are more laissez faire when it comes to eating from the floor.

But SOME changes do occur in all mothers’ brains and bodies. For example, all new mothers exhibit a heightened attention to threats and subsequent raised levels of anxiety. But when does heightened attention to threats become debilitating anxiety? Thanks to more understanding and tolerance about these changes, more and more women feel more comfortable reporting negative feelings after childbirth so that now we know that postpartum depression, which happens to 60 – 80% of mothers, is a serious matter. A serious matter that needs serious attention from both professionals and the immediate social circle of the mother, both for her sake as well as her infant’s. Don’t get me wrong, we – both males and females – still have a long way ahead of us to scientifically understand and to socially accept the mother brain, but these studies are a great start. They acknowledge what all mothers know: that they are different after childbirth than the way they were before. Now we have to figure out how are they different and what can we do to make everyone’s lives better.

Kim (2016) is an OK review, a real easy read, I recommend it to the non-specialists wholeheartedly; you just have to skip the name of the brain parts and the rest is pretty clear. It is also a very short review, which will help with reader fatigue. The caveat of that is that it doesn’t include a whole lotta studies, nor does it go in detail on the implications of what the handful cited have found, but you’ll get the gist of it. There is a vastly more thorough literature if one would include animal studies that the author, curiously, did not include. I know that a mouse is not a chimp is not a human, but all three of us are mammals, and social mammals at that. Surely, there is enough biological overlap so extrapolations are warranted, even if partially. Nevertheless, it’s a good start for those who want to know a bit about the changes motherhood does to the brain, behavior, thoughts, and feelings.

Corroborated with what I already know about the neuroscience of maternity, my favourite takeaway is this: new moms are not crazy. They can’t help most of these changes. It’s biology, you see. So go easy on new moms. Moms, also go easy on yourselves and know that, whether they want to share or not, the other moms probably go through the same stuff. You’re not alone. And if that overactive threat circuit gives you problems, i.e. you feel overwhelmed, it’s OK to ask for help. And if you don’t get it, ask for it again and again until you do. That takes courage, that’s empowerment.

P. S. The paper doesn’t look like it’s peer-reviewed. Yes, I know the peer-reviewing publication system is flawed, I’ve been on the receiving end of it myself, but it’s been drilled into my skull that it’s important, flawed as it is, so I thought to mention it.

REFERENCE: Kim, P. (Sept. 2016). Human Maternal Brain Plasticity: Adaptation to Parenting, New Directions for Child and Adolescent Development, (153): 47–58. PMCID: PMC5667351, doi: 10.1002/cad.20168. ARTICLE | FREE FULLTEXT PDF

By Neuronicus, 28 September 2018

Pic of the day: Total amount of DNA on Earth

139 DNA amount, better font - Copy

Approximately… give or take…

REFERENCE: Landenmark HKE, Forgan DH, & Cockell CS (11 Jun 2915). An Estimate of the Total DNA in the Biosphere. PLoS Biology, 13(6): e1002168. PMCID: PMC4466264, PMID: 26066900, DOI: 10.1371/journal.pbio.1002168. ARTICLE | FREE FULLTEXT PDF

By Neuronicus, 1 September 2018