Locus Coeruleus in mania

From all the mental disorders, bipolar disorder, a.k.a. manic-depressive disorder, has the highest risk for suicide attempt and completion. If the thought of suicide crosses your mind, stop reading this, it’s not that important; what’s important is for you to call the toll-free National Suicide Prevention Lifeline at 1-800-273-TALK (8255).

The bipolar disorder is defined by alternating manic episodes of elevated mood, activity, excitation, and energy with episodes of depression characterized by feelings of deep sadness, hopelessness, worthlessness, low energy, and decreased activity. It is also a more common disease than people usually expect, affecting about 1% or more of the world population. That means almost 80 million people! Therefore, it’s imperative to find out what’s causing it so we can treat it.

Unfortunately, the disease is very complex, with many brain parts, brain chemicals, and genes involved in its pathology. We don’t even fully comprehend how the best medication we have to lower the risk of suicide, lithium, works. The good news is the neuroscientists haven’t given up, they are grinding at it, and with every study we get closer to subduing this monster.

One such study freshly published last month, Cao et al. (2018), looked at a semi-obscure membrane protein, ErbB4. The protein is a tyrosine kinase receptor, which is a bit unfortunate because this means is involved in ubiquitous cellular signaling, making it harder to find its exact role in a specific disorder. Indeed, ErbB4 has been found to play a role in neural development, schizophrenia, epilepsy, even ALS (Lou Gehrig’s disease).

Given that ErbB4 is found in some neurons that are involved in bipolar and mutations in its gene are also found in some people with bipolar, Cao et al. (2018) sought to find out more about it.

First, they produced mice that lacked the gene coding for ErbB4 in neurons from locus coeruleus, the part of the brain that produces norepinephrine out of dopamine, better known for the European audience as nor-adrenaline. The mutant mice had a lot more norepinephrine and dopamine in their brains, which correlated with mania-like behaviors. You might have noticed that the term used was ‘manic-like’ and not ‘manic’ because we don’t know for sure how the mice feel; instead, we can see how they behave and from that infer how they feel. So the researchers put the mice thorough a battery of behavioral tests and observed that the mutant mice were hyperactive, showed less anxious and depressed behaviors, and they liked their sugary drink more than their normal counterparts, which, taken together, are indices of mania.

Next, through a series of electrophysiological experiments, the scientists found that the mechanism through which the absence of ErbB4 leads to mania is making another receptor, called NMDA, in that brain region more active. When this receptor is hyperactive, it causes neurons to fire, releasing their norepinephrine. But if given lithium, the mutant mice behaved like normal mice. Correspondingly, they also had a normal-behaving NMDA receptor, which led to normal firing of the noradrenergic neurons.

So the mechanism looks like this (Jargon alert!):

No ErbB4 –> ↑ NR2B NMDAR subunit –> hyperactive NMDAR –> ↑ neuron firing –> ↑ catecholamines –> mania.

In conclusion, another piece of the bipolar puzzle has been uncovered. The next obvious step will be for the researchers to figure out a medicine that targets ErbB4 and see if it could treat bipolar disorder. Good paper!

142 erbb4 - Copy

P.S. If you’re not familiar with the journal eLife, go and check it out. The journal offers for every study a half-page summary of the findings destined for the lay audience, called eLife digest. I’ve seen this practice in other journals, but this one is generally very well written and truly for the lay audience and the non-specialist. Something of what I try to do here, minus the personal remarks and in parenthesis metacognitions that you’ll find in most of my posts. In short, the eLife digest is masterly done. As my continuous struggles on this blog show, it is tremendously difficult for a scientist to write concisely, precisely, and jargonless at the same time. But eLife is doing it. Check it out. Plus, if you care to take a look on how science is done and published, eLife publishes all the editor’s rejection notes, all the reviewers’ comments, and all the author responses for a particular paper. Reading those is truly a teaching moment.

REFERENCE: Cao SX, Zhang Y, Hu XY, Hong B, Sun P, He HY, Geng HY, Bao AM, Duan SM, Yang JM, Gao TM, Lian H, Li XM (4 Sept 2018). ErbB4 deletion in noradrenergic neurons in the locus coeruleus induces mania-like behavior via elevated catecholamines. Elife, 7. pii: e39907. doi: 10.7554/eLife.39907. PMID: 30179154 ARTICLE | FREE FULLTEXT PDF

By Neuronicus, 14 October 2018

Autism cure by gene therapy

shank3 - Copy

Nothing short of an autism cure is promised by this hot new research paper.

Among many thousands of proteins that a neuron needs to make in order to function properly there is one called SHANK3 made from the gene shank3. (Note the customary writing: by consensus, a gene’s name is written using small caps and italicized, whereas the protein’s name that results from that gene expression is written with caps).

This protein is important for the correct assembly of synapses and previous work has shown that if you delete its gene in mice they show autistic-like behavior. Similarly, some people with autism, but by far not all, have a deletion on Chromosome 22, where the protein’s gene is located.

The straightforward approach would be to restore the protein production into the adult autistic mouse and see what happens. Well, one problem with that is keeping the concentration of the protein at the optimum level, because if the mouse makes too much of it, then the mouse develops ADHD and bipolar.

So the researchers developed a really neat genetic model in which they managed to turn on and off the shank3 gene at will by giving the mouse a drug called tamoxifen (don’t take this drug for autism! Beside the fact that is not going to work because you’re not a genetically engineered mouse with a Cre-dependent genetic switch on your shank3, it is also very toxic and used only in some form of cancers when is believed that the benefits outweigh the horrible side effects).

In young adult mice, the turning on of the gene resulted in normalization of synapses in the striatum, a brain region heavily involved in autistic behaviors. The synapses were comparable to normal synapses in some aspects (from the looks, i.e. postsynaptic density scaffolding, to the works, i.e. electrophysiological properties) and even more so in others (more dendritic spines than normal, meaning more synapses, presumably). This molecular repair has been mirrored by some behavioral rescue: although these mice still had more anxiety and more coordination problems than the control mice, their social aversion and repetitive behaviors disappeared. And the really really cool part of all this is that this reversal of autistic behaviors was done in ADULT mice.

Now, when the researchers turned the gene on in 20 days old mice (which is, roughly, the equivalent of the entering the toddling stage in humans), all four behaviors were rescued: social aversion, repetitive, coordination, and anxiety. Which tells us two things: first, the younger you intervene, the more improvements you get and, second and equally important, in adult, while some circuits seem to be irreversibly developed in a certain way, some other neural pathways are still plastic enough as to be amenable to change.

Awesome, awesome, awesome. Even if only a very small portion of people with autism have this genetic problem (about 1%), even if autism spectrum disorders encompass such a variety of behavioral abnormalities, this research may spark hope for a whole range of targeted gene therapies.

Reference: Mei Y, Monteiro P, Zhou Y, Kim JA, Gao X, Fu Z, Feng G. (Epub 17 Feb 2016). Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature. doi: 10.1038/nature16971. Article | MIT press release

By Neuronicus, 19 February 2016

Save

As nutty as Dali, as crazy as van Gogh

Left: Portrait of Salvador Dali (taken in Hôtel Meurice, Paris, by Allen Warren, 1972). Right: Self-portrait with bandaged ear and pipe (van Gogh, 1889). Courtesy of Wikipedia.
Left: Portrait of Salvador Dali (taken in Hôtel Meurice, Paris, by Allen Warren, 1972). Right: Self-portrait with bandaged ear and pipe (van Gogh, 1889). Courtesy of Wikipedia.

Having a brain disease means to have different scores on emotion, cognition, and behavior inventories than the population mean. Also different from the population mean is the ability of an artist to create evocative things. Whether is a piece of music or a painting (or in my case a simple straight line), whether we like it or not, most of us agree that we couldn’t have done it. Also, artists show a decrease in practical reasoning, just like the schizophrenics.

Power et al. (2015) sought to find out if there is a link between being creative and having schizophrenia or bipolar disorder. Lucky for them, the north-European countries keep detailed medical and genetic databases of their population: they had access to 5 databases from Iceland, Sweden, and Netherlands, featuring tens to hundreds of thousands of people.

The authors analyzed hundreds of thousands of individual genetic differences (i.e. SNPs = single nucleotide polymorphisms) that had been previously linked with schizophrenia or bipolar disorder. As a side note, some of this data was obtained by inviting citizens to voluntarily fill out a detailed medical questionnaire and donate blood for DNA analysis. A staggering amount of people agreed. I wonder how many would have done so in U.S.A….

Anyway, the authors defined creative individuals (artists) as “those having (or ever having had) positions in the fields of dance, film, music, theater, visual arts or writing” (online supplemental methods), including those teaching these subjects. And they found out that the same genetic makeup that increases the risk of developing schizophrenia or bipolar disorder also underlies creativity. This link was not explained by education, age, sex, or shared environment.

The study also knocked down an evolutionary explanation for the persistence of schizophrenia and bipolar disorders in the genetic pool. The hypothesis posits that we still have these devastating brain disorders because they come with the side effect of creativity that offsets their negative fitness; but that does not hold, as the artists in this study had less children than the average population. Authors did not offer an alternative speculation.

Reference: Power, R. A., Steinberg, S., Bjornsdottir, G., Rietveld, C. A., Abdellaoui, A., Nivard, M. M., Johannesson, M., Galesloot, T.E., Hottenga, J. J., Willemsen, G., Cesarini, D., Benjamin, D. J., Magnusson, P. K., Ullén, F., Tiemeier, H., Hofman, A., van Rooij, F. J., Walters, G. B., Sigurdsson, E., Thorgeirsson, T. E., Ingason, A., Helgason, A., Kong, A., Kiemeney, L. A., Koellinger, P., Boomsma, D. I., Gudbjartsson, D., Stefansson, H., & Stefansson K. (July 2015, Epub 8 June 2015). Polygenic risk scores for schizophrenia and bipolar disorder predict creativity. Nature Neuroscience, 8(7):953-5. doi: 10.1038/nn.4040. Article + Nature comment

By Neuronicus, 7 October 2015