The Mom Brain

Recently, I read an opinion titled When I Became A Mother, Feminism Let Me Down. The gist of it was that some feminists, while empowering women and girls to be anything they want to be and to do anything a man or a boy does, they fail in uplifting the motherhood aspect of a woman’s life, should she choose to become a mother. In other words, even (or especially, in some cases) feminists look down on the women who chose to switch from a paid job and professional career to an unpaid stay-at-home mom career, as if being a mother is somehow beneath what a woman can be and can achieve. As if raising the next generation of humans to be rational, informed, well-behaved social actors instead of ignorant brutal egomaniacs is a trifling matter, not to be compared with the responsibilities and struggles of a CEO position.

Patriarchy notwithstanding, a woman can do anything a man can. And more. The ‘more’ refers to, naturally, motherhood. Evidently, fatherhood is also a thing. But the changes that happen in a mother’s brain and body during pregnancy, breastfeeding, and postpartum periods are significantly more profound than whatever happens to the most loving and caring and involved father.

Kim (2016) bundled some of these changes in a nice review, showing how these drastic and dramatic alterations actually have an adaptive function, preparing the mother for parenting. Equally important, some of the brain plasticity is permanent. The body might spring back into shape if the mother is young or puts into it a devilishly large amount of effort, but some brain changes are there to stay. Not all, though.

One of the most pervasive findings in motherhood studies is that hormones whose production is increased during pregnancy and postpartum, like oxytocin and dopamine, sensitize the fear circuit in the brain. During the second trimester of pregnancy and particularly during the third, expectant mothers start to be hypervigilent and hypersensitive to threats and to angry faces. A higher anxiety state is characterized, among other things, by preferentially scanning for threats and other bad stuff. Threats mean anything from the improbable tiger to the 1 in a million chance for the baby to be dropped by grandma to the slightly warmer forehead or the weirdly colored poopy diaper. The sensitization of the fear circuit, out of which the amygdala is an essential part, is adaptive because it makes the mother more likely to not miss or ignore her baby’s cry, thus attending to his or her needs. Also, attention to potential threats is conducive to a better protection of the helpless infant from real dangers. This hypersensitivity usually lasts 6 to 12 months after childbirth, but it can last lifetime in females already predisposed to anxiety or exposed to more stressful events than average.

Many new mothers worry if they will be able to love their child as they don’t feel this all-consuming love other women rave about pre- or during pregnancy. Rest assured ladies, nature has your back. And your baby’s. Because as soon as you give birth, dopamine and oxytocin flood the body and the brain and in so doing they modify the reward motivational circuit, making new mothers literally obsessed with their newborn. The method of giving birth is inconsequential, as no differences in attachment have been noted (this is from a different study). Do not mess with mother’s love! It’s hardwired.

Another change happens to the brain structures underlying social information processing, like the insula or fusiform gyrus, making mothers more adept at self-motoring, reflection, and empathy. Which is a rapid transformation, without which a mother may be less accurate in understanding the needs, mental state, and social cues of the very undeveloped ball of snot and barf that is the human infant (I said that affectionately, I promise).

In order to deal with all these internal changes and the external pressures of being a new mom the brain has to put up some coping mechanisms. (Did you know, non-parents, that for the first months of their newborn lives, the mothers who breastfeed must do so at least every 4 hours? Can you imagine how berserk with sleep deprivation you would be after 4 months without a single night of full sleep but only catnaps?). Some would be surprised to find out – not mothers, though, I’m sure – that “new mothers exhibit enhanced neural activation in the emotion regulation circuit including the anterior cingulate cortex, and the medial and lateral prefrontal cortex” (p. 50). Which means that new moms are actually better at controlling their emotions, particularly at regulating negative emotional reactions. Shocking, eh?

140 mom brain1 - Copy

Finally, it appears that very few parts of the brain are spared from this overhaul as the entire brain of the mother is first reduced in size and then it grows back, reorganized. Yeah, isn’t that weird? During pregnancy the brain shrinks, being at its lowest during childbirth and then starts to grow again, reaching its pre-pregnancy size 6 months after childbirth! And when it’s back, it’s different. The brain parts heavily involved in parenting, like the amygdala involved in the anxiety, the insula and superior temporal gyrus involved in social information processing and the anterior cingulate gyrus involved in emotional regulation, all these show increased gray matter volume. And many other brain structures that I didn’t list. One brain structure is rarely involved only in one thing so the question is (well, one of them) what else is changed about the mothers, in addition to their increased ability to parent?

I need to add a note here: the changes that Kim (2016) talks about are averaged. That means some women get changed more, some less. There is variability in plasticity, which should be a pleonasm. There is also variability in the human population, as any mother attending a school parents’ night-out can attest. Some mothers are paranoid with fear and overprotective, others are more laissez faire when it comes to eating from the floor.

But SOME changes do occur in all mothers’ brains and bodies. For example, all new mothers exhibit a heightened attention to threats and subsequent raised levels of anxiety. But when does heightened attention to threats become debilitating anxiety? Thanks to more understanding and tolerance about these changes, more and more women feel more comfortable reporting negative feelings after childbirth so that now we know that postpartum depression, which happens to 60 – 80% of mothers, is a serious matter. A serious matter that needs serious attention from both professionals and the immediate social circle of the mother, both for her sake as well as her infant’s. Don’t get me wrong, we – both males and females – still have a long way ahead of us to scientifically understand and to socially accept the mother brain, but these studies are a great start. They acknowledge what all mothers know: that they are different after childbirth than the way they were before. Now we have to figure out how are they different and what can we do to make everyone’s lives better.

Kim (2016) is an OK review, a real easy read, I recommend it to the non-specialists wholeheartedly; you just have to skip the name of the brain parts and the rest is pretty clear. It is also a very short review, which will help with reader fatigue. The caveat of that is that it doesn’t include a whole lotta studies, nor does it go in detail on the implications of what the handful cited have found, but you’ll get the gist of it. There is a vastly more thorough literature if one would include animal studies that the author, curiously, did not include. I know that a mouse is not a chimp is not a human, but all three of us are mammals, and social mammals at that. Surely, there is enough biological overlap so extrapolations are warranted, even if partially. Nevertheless, it’s a good start for those who want to know a bit about the changes motherhood does to the brain, behavior, thoughts, and feelings.

Corroborated with what I already know about the neuroscience of maternity, my favourite takeaway is this: new moms are not crazy. They can’t help most of these changes. It’s biology, you see. So go easy on new moms. Moms, also go easy on yourselves and know that, whether they want to share or not, the other moms probably go through the same stuff. You’re not alone. And if that overactive threat circuit gives you problems, i.e. you feel overwhelmed, it’s OK to ask for help. And if you don’t get it, ask for it again and again until you do. That takes courage, that’s empowerment.

P. S. The paper doesn’t look like it’s peer-reviewed. Yes, I know the peer-reviewing publication system is flawed, I’ve been on the receiving end of it myself, but it’s been drilled into my skull that it’s important, flawed as it is, so I thought to mention it.

REFERENCE: Kim, P. (Sept. 2016). Human Maternal Brain Plasticity: Adaptation to Parenting, New Directions for Child and Adolescent Development, (153): 47–58. PMCID: PMC5667351, doi: 10.1002/cad.20168. ARTICLE | FREE FULLTEXT PDF

By Neuronicus, 28 September 2018

Amusia and stroke

Although a complete musical anti-talent myself, that doesn’t prohibit me from fully enjoying the works of the masters in the art. When my family is out of earshot, I even bellow – because it cannot be called music – from the top of my lungs alongside the most famous tenors ever recorded. A couple of days ago I loaded one of my most eclectic playlists. While remembering my younger days as an Iron Maiden concert goer (I never said I listen only to classical music :D) and screaming the “Fear of the Dark” chorus, I wondered what’s new on the front of music processing in the brain.

And I found an interesting recent paper about amusia. Amusia is, as those of you with ancient Greek proclivities might have surmised, a deficit in the perception of music, mainly the pitch but sometimes rhythm and other aspects of music. A small percentage of the population is born with it, but a whooping 35 to 69% of stroke survivors exhibit the disorder.

So Sihvonen et al. (2016) decided to take a closer look at this phenomenon with the help of 77 stroke patients. These patients had an MRI scan within the first 3 weeks following stroke and another one 6 months poststroke. They also completed a behavioral test for amusia within the first 3 weeks following stroke and again 3 months later. For reasons undisclosed, and thus raising my eyebrows, the behavioral assessment was not performed at 6 months poststroke, nor an MRI at the 3 months follow-up. It would be nice to have had behavioral assessment with brain images at the same time because a lot can happen in weeks, let alone months after a stroke.

Nevertheless, the authors used a novel way to look at the brain pictures, called voxel-based lesion-symptom mapping (VLSM). Well, is not really novel, it’s been around for 15 years or so. Basically, to ascertain the function of a brain region, researchers either get people with a specific brain lesion and then look for a behavioral deficit or get a symptom and then they look for a brain lesion. Both approaches have distinct advantages but also disadvantages (see Bates et al., 2003). To overcome the disadvantages of these methods, enter the scene VLSM, which is a mathematical/statistical gimmick that allows you to explore the relationship between brain and function without forming preconceived ideas, i.e. without forcing dichotomous categories. They also looked at voxel-based morphometry (VBM), which a fancy way of saying they looked to see if the grey and white matter differ over time in the brains of their subjects.

After much analyses, Sihvonen et al. (2016) conclude that the damage to the right hemisphere is more likely conducive to amusia, as opposed to aphasia which is due mainly to damage to the left hemisphere. More specifically,

“damage to the right temporal areas, insula, and putamen forms the crucial neural substrate for acquired amusia after stroke. Persistent amusia is associated with further [grey matter] atrophy in the right superior temporal gyrus (STG) and middle temporal gyrus (MTG), locating more anteriorly for rhythm amusia and more posteriorly for pitch amusia.”

The more we know, the better chances we have to improve treatments for people.

104-copy

unless you’re left-handed, then things are reversed.

References:

1. Sihvonen AJ, Ripollés P, Leo V, Rodríguez-Fornells A, Soinila S, & Särkämö T. (24 Aug 2016). Neural Basis of Acquired Amusia and Its Recovery after Stroke. Journal of Neuroscience, 36(34):8872-8881. PMID: 27559169, DOI: 10.1523/JNEUROSCI.0709-16.2016. ARTICLE  | FULLTEXT PDF

2.Bates E, Wilson SM, Saygin AP, Dick F, Sereno MI, Knight RT, & Dronkers NF (May 2003). Voxel-based lesion-symptom mapping. Nature Neuroscience, 6(5):448-50. PMID: 12704393, DOI: 10.1038/nn1050. ARTICLE

By Neuronicus, 9 November 2016

Save

The runner’s euphoria and opioids

runner-811877_960_720
The runner’s high is most likely due to release of the endorphins binding to the opioid receptors according to Boecker et al. (2008, doi: 10.1093/cercor/bhn013). Image courtesy of Pixabay.

We all know that exercise is good for you: it keeps you fit, it reduces stress and improves your mood. And also, sometimes, particularly after endurance running, it gets you high. The mechanism of euphoria reported by some runners after resistance training is unknown. Here is a nice paper trying to figure it out.

Boecker et al. (2008) scanned 10 trained male athletes at rest and after 2 hour worth of endurance running. By “trained athletes” they mean people that ran for 4-10 hours weekly for the past 2 years. The scanning was done using a positron emission tomograph (PET). The PET looks for a particular chemical that has been injected into the bloodstream of the subjects, in this case non-selective opioidergic ligand (it binds to all opioid receptors in the brain; morphine, for example, binds only to a subclass of the opioid receptors).

The rationale is as follows: if we see an increase in ligand binding, then the receptors were free, unoccupied, showing a reduction in the endogenous neurotransmitter, that is the substance that the brain produces for those receptors; if we see a decrease in the ligand binding it was because the receptors were occupied, meaning that there was an increase in the production of the endogenous neurotransmitter. The endogenous neurotransmitters for the opioid receptors are the endorphins (don’t confuse them with epinephrine a.k.a. adrenaline; different systems entirely).

After running, the subjects reported that they are euphoric and happy, but no change in other feelings (confusion, anger, sadness, fear etc.; there was a reduction in fear, but it was not significant). The scanning showed that it was less binding of the opioidergic ligand in many places in the brain (for the specialist, here you go: prefrontal/orbitofrontal cortices, dorsolateral prefrontal cortex, anterior and posterior cingulate cortex, insula and parahippocampal gyrus, sensorimotor/parietal regions, cerebellum and basal ganglia).

Regression analysis showed that there was a link between the euphoria feeling and the receptor occupancy: the more euphoric the people said they were, the more endorphines (i.e. endogenous opioids) they had bound in the brain. This study is the first to show this kind of link.

Reference: Boecker H, Sprenger T, Spilker ME, Henriksen G, Koppenhoefer M, Wagner KJ, Valet M, Berthele A, & Tolle TR. (Nov 2008, Epub 21 Feb 2008). The Runner’s High: Opioidergic Mechanisms in the Human Brain. Cerebral Cortex, 18:2523–2531. doi:10.1093/cercor/bhn013. Article | FREE FULLTEXT PDF

By Neuronicus, 28 November 2015

Save

Pee now! NOW, I said! In a huge magnet. While we watch.

Photo credit: Free clipart from www.cliparthut.com
Photo credit: Free clipart from http://www.cliparthut.com

Like many studies that fill in unknown gaps in the body of knowledge, the paper below may not attract attention, except from the people in their narrow field. So let’s give it a little attention.

Michels et al. (2015) sought to map out the brain network underlying the control of urination using an fMRI scanner. They got 22 healthy adult males and they gave them furosemide, which is a diuretic, and then asked them to drink as much water as they want until they need to urinate. During this, “a condom catheter was attached to the penis of each subject” (p. 3370), to monitor the urine flow while in scanner. Then the testing would not start, oh no. The subjects were then submitted to an ultrasound to make sure the bladder was full. Then they were asked again how much they really needed to go pee. Then they go in the scanner in a supine position, where they are told to wait, then to imagine the starting of urination (but don’t pee just yet!), and finally, finally allowed to urinate. But then, cruelly, told to stop only 3 second into the act. And then the scanner cycle would repeat. Their champion peers (I cannot avoid the pun, I’m sorry) managed to pee 15 times in the scanner. I wonder how many subjects peed sans cue… (authors don’t mention that).

Fig. 1 from Michels et al. (2015) depicting the fMRI scan paradigm, which consisted of 2 randomly alternating blocks.
Fig. 1 from Michels et al. (2015) depicting the fMRI scan paradigm, which consisted of 2 randomly alternating blocks. SDV = strong desire to void.

Amazingly, under these conditions, there were seven men who could not urinate in the scanner. Authors call these non-voiders, or, as we commonly know them, the shy bladders or the bashful kidneys. Not surprisingly, non-voiders had lower activity in the pontine micturition center (PMC), a brain area, which, as its name implies, is responsible for urination. Also not surprisingly – for me at least, the authors find this interesting -, the non-voiders showed increased activity in the anterior midcingulate cortex (aMCC), which is an area involved in control. I guess you need some steely control to not pee after all that. The aMCC inhibits the urination-facilitation brain regions, such as the PMC.

Anyway, the main finding of the study is a detailed map of micturition supraspinal mechanisms, which consists of a slew of structures, each with its own function. I had never known how complicated peeing and not-peeing are until I read this paper. Jokes and cringes aside, this study is a welcome addition to understanding how we control our bodily functions and where to start looking when this control fails, shedding new light on the interplay between reflex and control.

Reference: Michels, L., Blok, B. F., Gregorini, F., Kurz, M., Schurch, B., Kessler, T. M., Kollias, S., & Mehnert, U. (October 2015, Epub Jun 26 2014). Supraspinal Control of Urine Storage and Micturition in Men-An fMRI Study. Cerebral Cortex, 25(10): 3369-80. doi: 10.1093/cercor/bhu140. Article | FREE FULLTEXT PDF

By Neuronicus, 1 October 2015