THE FIRSTS: The Mirror Neurons (1988)

There are some neurons in the human brain that fire both when the person is doing some behavior and when watching that behavior performed by someone else. These cells are called mirror neurons and were first discovered in 1988 (see NOTE) by a group of researchers form the University of Parma, Italy, led by Giacomo Rizzolatti.

The discovery was done by accident. The researchers were investigating the activity of neurons in the rostral part of the inferior premotor cortex (riPM) of macaque monkeys with electrophysiological recordings. They placed a box in front of the monkey which had various objects in it. When the monkey pressed a switch, the content of the box was illuminated, then a door would open and the monkey reached for an object. Under each object was hidden a small piece of food. Several neurons were discharging when the animal was grasping the object. But the researchers noticed that some of these neurons ALSO fired when the monkey was motionless and watching the researcher grasping the objects!

The authors then did more motions to see when exactly the two neurons were firing, whether it’s related to the food or threatening gestures and so on. And then they recorded from some 182 more neurons while the monkey or the experimenter were performing hand actions with different objects. Importantly, they also did an electromyogram (EMG) and saw that when the neurons that were firing when the monkey was observing actions, the muscles did not move at all.

They found that some neurons responded to both when doing and seeing the actions, whereas some other neurons responded only when doing or only when seeing the actions. The neurons that are active when observing are called mirror neurons now. In 1996 they were identified also in humans with the help of positron emission tomography (PET).

88mirror - Copy
In yellow, the frontal region; in red, the parietal region. Credits: Brain diagram by Korbinian Brodmann under PD license; Tracing by Neuronicus under PD license; Area identification and color coding after Rizzolatti & Fabbri-Destro (2010) © Springer-Verlag 2009.

It is tragicomical that the authors first submitted their findings to the most prestigious scientific journal, Nature, believing that their discovery is worth it, and rightfully so. But, Nature rejected their paper because of its “lack of general interest” (Rizzolatti & Fabbri-Destro, 2010)! Luckily for us, the editor of Experimental Brain Research, Otto Creutzfeld, did not share the Nature‘s opinion.

Thousands of experiments followed the tremendous discovery of mirror neurons, even trying to manipulate their activity. Many researchers believe that the activity of the mirror neurons is fundamental for understanding the intentions of others, the development of theory of mind, empathy, the process of socialization, language development and even human self-awareness.

NOTE: Whenever possible, I try to report both the date of the discovery and the date of publication. Sometimes, the two dates can differ quite a bit. In this case, the discovery was done in 1988 and the publishing in 1992.

 References:

  1. di Pellegrino G, Fadiga L, Fogassi L, Gallese V, & Rizzolatti G (October 1992). Understanding motor events: a neurophysiological study. Experimental Brain Research, 91(1):176-180. DOI: 10.1007/BF00230027. ARTICLE  | Research Gate FULLTEXT PDF
  2. Rizzolatti G & Fabbri-Destro M (Epub 18 Sept 2009; January 2010). Mirror neurons: From discovery to autism. Experimental Brain Research, 200(3): 223-237. DOI: 10.1007/s00221-009-2002-3. ARTICLE  | Research Gate FULLTEXT PDF 

By Neuronicus, 15 July 2016

Advertisements

Mu suppression and the mirror neurons

A few decades ago, Italian researchers from the University of Parma discovered some neurons in monkey which were active not only when the monkey is performing an action, but also when watching the same action performed by someone else. This kind of neuron, or rather this particular neuronal behavior, had been subsequently identified in humans scattered mainly within the frontal and parietal cortices (front and top of your head) and called the mirror neuron system (MNS). Its role is to understand the intentions of others and thus facilitate learning. Mind you, there are, as it should be in any healthy vigorous scientific endeavor, those who challenge this role and even the existence of MNS.

Hobson & Bishop (2016) do not question the existence of the mirror neurons or their roles, but something else. You see, proper understanding of intentions, actions and emotions of others is severely impaired in autism or some schizophrenias. Correspondingly, there have been reports saying that the MNS function is abnormal in these disorders. So if we can manipulate the neurons that help us understanding others, then we may be able to study the neurons better, and – who knows? – maybe even ‘switch them on’ and ‘off’ when needed (Ha! That’s a scary thought!).

EEG WIKI
Human EEG waves (from Wikipedia, under CC BY-SA 3.0 license)

Anyway, previous work said that recording a weak Mu frequency in the brain regions with mirror neurons show that these neurons are active. This frequency (between 8-13 Hz) is recorded through electroencephalography (EEG). The assumption is as follows: when resting, neurons fire synchronously; when busy, they fire each to its own, so they desynchronize, which leads to a reduction in the Mu intensity.

All well and good, but there is a problem. There is another frequency that overlaps with the Mu frequency and that is the Alpha band. Alpha activity is highest when a person is awake with eyes closed, but diminishes when the person is drowsy or, importantly, when making a mental effort, like paying great attention to something. So, if I see a weak Mu/Alpha frequency when the subject is watching someone grabbing a pencil, is that because the mirror neurons are active or because he’s sleepy? There are a few gimmicks to disentangle between the two, from the setup of the experiment in such a way that it requires same attention demand over tasks to the careful localization of the origin of the two waves (Mu is said to arise from sensoriomotor regions, whereas Alpha comes from more posterior regions).

But Hobson & Bishop (2016) argue that this disentangling is more difficult than previously thought by carrying out a series of experiments where they varied the baseline, in such a way that some were more attentionally demanding than others. After carefully analyzing various EEG waves and electrodes positions in these conditions, they conclude that “mu suppression can be used to index the human MNS, but the effect is weak and unreliable and easily confounded with alpha suppression“.

87mu - Copy

What makes this paper interesting to me, besides its empirical findings, is the way the experiment was conducted and published. This is a true hypothesis driven study, following the scientific method step by step, a credit to us all scientists. In other words, a rare gem.  A lot of other papers are trying to make a pretty story from crappy data or weave some story about the results as if that’s what they went for all along when in fact they did a bunch of stuff and chose what looked good on paper.

Let me explain. As a consequence of the incredible pressure put on researchers to publish or perish (which, believe me, is more than just a metaphor, your livelihood and career depend on it), there is an alarming increase in bad papers, which means

  • papers with inappropriate statistical analyses (p threshold curse, lack of multiple comparisons corrections, like the one brilliantly exposed here),
  • papers with huge databases in which some correlations are bound to appear by chance alone and are presented as meaningful (p-hacking or data fishing),
  • papers without enough data to make a meaningful conclusion (lack of statistical power),
  • papers that report only good-looking results (only positive results required by journals),
  • papers that seek only to provide data to reinforce previously held beliefs (confirmation bias)
  • and so on.

For these reasons (and more), there is a high rate of rejection of papers submitted to journals (about 90%), which means more than just a lack of publication in a good journal; it means wasted time, money and resources, shattered career prospects for the grad students who did the experiments and threatened job security for everybody involved, not to mention a promotion of distrust of science and a disservice to the scientific endeavor in general. So some journals, like Cortex, are moving toward a system called Registered Report, which asks for the rationale and the plan of the experiment before this is conducted, which should protect against many of the above-mentioned plagues. If the plan is approved, the chances to get the results published in that journal are 90%.

This is one of those Registered Report papers. Good for you, Hobson & Bishop!

Reference: Hobson HM & Bishop DVM (Epub April 2016). Mu suppression – A good measure of the human mirror neuron system?. Cortex, doi: 10.1016/j.cortex.2016.03.019 ARTICLE | FREE FULLTEXT PDF | RAW DATA

By Neuronicus, 14 July 2016