Painful Pain Paper

There has been much hype over the new paper published in the latest Nature issue which claims to have discovered an opioid analgesic that doesn’t have most of the side effects of morphine. If the claim holds, the authors may have found the Holy Grail of pain research chased by too many for too long (besides being worth billions of dollars to its discoverers).

The drug, called PZM21, was discovered using structure-based drug design. This means that instead of taking a drug that works, say morphine, and then tweaking its molecular structure in various ways and see if the resultant drugs work, you take the target of the drug, say mu-opioid receptors, and design a drug that fits in that slot. The search and design are done initially with sophisticated software and there are many millions of virtual candidates. So it takes a lot of work and ingenuity to select but a few drugs that will be synthesized and tested in live animals.

Manglik et al. (2016) did just that and they came up with PZM21 which, compared to morphine, is:

1) selective for the mu-opioid receptors (i.e. it doesn’t bind to anything else)
2) produces no respiratory depression (maybe a touch on the opposite side)
3) doesn’t affect locomotion
4) produces less constipation
5) produces long-lasting affective analgesia
6) and has less addictive liability

The Holy Grail, right? Weeell, I have some serious issues with number 5 and, to some extent, number 6 on this list.

Normally, I wouldn’t dissect a paper so thoroughly because, if there is one thing I learned by the end of GradSchool and PostDoc, is that there is no perfect paper out there. Consequently, anyone with scientific training can find issues with absolutely anything published. I once challenged someone to bring me any loved and cherished paper and I would tear it apart; it’s much easier to criticize than to come up with solutions. Probably that’s why everybody hates Reviewer No. 2…

But, for extraordinary claims, you need extraordinary evidence. And the evidence simply does not support the 5 and maybe 6 above.

Let’s start with pain. The authors used 3 tests: hotplate (drop a mouse on a hot plate for 10 sec and see what it does), tail-flick (give an electric shock to the tail and see how fast the mouse flicks its tail) and formalin (inject an inflammatory painful substance in the mouse paw and see what the animal does). They used 3 doses of PZM21 in the hotplate test (10, 20, and 40 mg/Kg), 2 doses in the tail-flick test (10 and 20), and 1 dose in the formalin test (20). Why? If you start with a dose-response in a test and want to convince me it works in the other tests, then do a dose-response for those too, so I have something to compare. These tests have been extensively used in pain research and the standard drug used is morphine. Therefore, the literature is clear on how different doses of morphine work in these tests. I need your dose-responses for your new drug to be able to see how it measures up, since you claim it is “more efficacious than morphine”. If you don’t want to convince me there is a dose-response effect, that’s fine too, I’ll frown a little, but it’s your choice. However, then choose a dose and stick with it! Otherwise I cannot compare the behaviors across tests, rendering one or the other test meaningless. If you’re wondering, they used only one dose of morphine in all the tests, except the hotplate, where they used two.

Another thing also related to doses. The authors found something really odd: PZM21 works (meaning produces analgesia) in the hotplate, but not the tail-flick tests. This is truly amazing because no opiate I know of can make such a clear-cut distinction between those two tests. Buuuuut, and here is a big ‘BUT” they did not test their highest dose (40mg/kg) in the tail-flick test! Why? I’ll tell you how, because I am oh sooo familiar with this argument. It goes like this:

Reviewer: Why didn’t you use the same doses in all your 3 pain tests?

Author: The middle and highest doses have similar effects in the hotplate test, ok? So it doesn’t matter which one of these doses I’ll use in the tail-flick test.

Reviewer: Yeah, right, but, you have no proof that the effects of the two doses are indistinguishable because you don’t report any stats on them! Besides, even so, that argument applies only when a) you have ceiling effects (not the case here, your morphine hit it, at any rate) and b) the drug has the expected effects on both tests and thus you have some logical rationale behind it. Which is not the case here, again: your point is that the drug DOESN’T produce analgesia in the tail-flick test and yet you don’t wanna try its HIGHEST dose… REJECT AND RESUBMIT! Awesome drug discovery, by the way!

So how come the paper passed the reviewers?! Perhaps the fact that two of the reviewers are long term publishing co-authors from the same University had something to do with it, you know, same views predisposes them to the same biases and so on… But can you do that? I mean, have reviewers for Nature from the same department for the same paper?

Alrighty then… let’s move on to the stats. Or rather not. Because there aren’t any for the hotplate or tail-flick! Now, I know all about the “freedom from the tyranny of p” movement (that is: report only the means, standard errors of mean, and confidence intervals and let the reader judge the data) and about the fact that the average scientist today needs to know 100-fold more stats that his predecessors 20 years ago (although some biologists and chemists seem to be excused from this, things either turn color or not, either are there or not etc.) or about the fact that you cannot get away with only one experiment published these days, but you need a lot of them so you have to do a lot of corrections to your stats so you don’t fall into the Type 1 error. I know all about that, but just like the case with the doses, choose one way or another and stick to it. Because there are ANOVAs ran for the formalin test, the respiration, constipation, locomotion, and conditioned place preference tests, but none for the hotplate or tailflick! I am also aware that to be published in Science or Nature you have to strip your work and wordings to the bare minimum because the insane wordcount limits, but you have free rein in the Supplementals. And I combed through those and there are no stats there either. Nor are there any power analyses… So, what’s going on here? Remember, the authors didn’t test the highest dose on the tail-flick test because – presumably – the highest and intermediary doses have indistinguishable effects, but where is the stats to prove it?

And now the thing that really really bothered me: the claim that PZM21 takes away the affective dimension of pain but not the sensory. Pain is a complex experience that, depending on your favourite pain researcher, has at least 2 dimensions: the sensory (also called ‘reflexive’ because it is the immediate response to the noxious stimulation that makes you retract by reflex the limb from whatever produces the tissue damage) and the affective (also called ‘motivational’ because it makes the pain unpleasant and motivates you to get away from whatever caused it and seek alleviation and recovery). The first aspect of pain, the sensory, is relatively easy to measure, since you look at the limb withdrawal (or tail, in the case of animals with prolonged spinal column). By contrast, the affective aspect is very hard to measure. In humans, you can ask them how unpleasant it is (and even those reports are unreliable), but how do you do it with animals? Well, you go back to humans and see what they do. Humans scream “Ouch!” or swear when they get hurt (so you can measure vocalizations in animals) or humans avoid places in which they got hurt because they remember the unpleasant pain (so you do a test called Conditioned Place Avoidance for animals, although if you got a drug that shows positive results in this test, like morphine, you don’t know if you blocked the memory of unpleasantness or the feeling of unpleasantness itself, but that’s a different can of worms). The authors did not use any of these tests, yet they claim that PZM21 takes away the unpleasantness of pain, i.e. is an affective analgesic!

What they did was this: they looked at the behaviors the animal did on the hotplate and divided them in two categories: reflexive (the lifting of the paw) and affective (the licking of the paw and the jumping). Now, there are several issues with this dichotomy, I’m not even going to go there; I’ll just say that there are prominent pain researchers that will scream from the top of their lungs that the so-called affective behaviors from the hotplate test cannot be indexes of pain affect, because the pain affect requires forebrain structures and yet these behaviors persist in the decerebrated rodent, including the jumping. Anyway, leaving the theoretical debate about what those behaviors they measured really mean aside, there still is the problem of the jumpers: namely, the authors excluded from the analysis the mice who tried to jump out of the hotplate test in the evaluation of the potency of PZM21, but then they left them in when comparing the two types of analgesia because it’s a sign of escaping, an emotionally-valenced behavior! Isn’t this the same test?! Seriously? Why are you using two different groups of mice and leaving the impression that is only one? And oh, yeah, they used only the middle dose for the affective evaluation, when they used all three doses for potency…. And I’m not even gonna ask why they used the highest dose in the formalin test… but only for the normal mice, the knockouts in the same test got the middle dose! So we’re back comparing pears with apples again!

Next (and last, I promise, this rant is way too long already), the non-addictive claim. The authors used the Conditioned Place Paradigm, an old and reliable method to test drug likeability. The idea is that you have a box with 2 chambers, X and Y. Give the animal saline in chamber X and let it stay there for some time. Next day, you give the animal the drug and confine it in chamber Y. Do this a few times and on the test day you let the animal explore both chambers. If it stays more in chamber Y then it liked the drug, much like humans behave by seeking a place in which they felt good and avoiding places in which they felt bad. All well and good, only that is standard practice in this test to counter-balance the days and the chambers! I don’t know about the chambers, because they don’t say, but the days were not counterbalanced. I know, it’s a petty little thing for me to bring that up, but remember the saying about extraordinary claims… so I expect flawless methods. I would have also liked to see a way more convincing test for addictive liability like self-administration, but that will be done later, if the drug holds, I hope. Thankfully, unlike the affective analgesia claims, the authors have been more restrained in their verbiage about addiction, much to their credit (and I have a nasty suspicion as to why).

I do sincerely think the drug shows decent promise as a painkiller. Kudos for discovering it! But, seriously, fellows, the behavioral portion of the paper could use some improvements.

Ok, rant over.

EDIT (Aug 25, 2016): I forgot to mention something, and that is the competing financial interests declared for this paper: some of its authors already filed a provisional patent for PZM21 or are already founders or consultants for Epiodyne (a company that that wants to develop novel analgesics). Normally, that wouldn’t worry me unduly, people are allowed to make a buck from their discoveries (although is billions in this case and we can get into that capitalism-old debate whether is moral to make billions on the suffering of other people, but that’s a different story). Anyway, combine the financial interests with the poor behavioral tests and you get a very shoddy thing indeed.

Reference: Manglik A, Lin H, Aryal DK, McCorvy JD, Dengler D, Corder G, Levit A, Kling RC, Bernat V, Hübner H, Huang XP, Sassano MF, Giguère PM, Löber S, Da Duan, Scherrer G, Kobilka BK, Gmeiner P, Roth BL, & Shoichet BK (Epub 17 Aug 2016). Structure-based discovery of opioid analgesics with reduced side effects. Nature, 1-6. PMID: 27533032, DOI: 10.1038/nature19112. ARTICLE 

By Neuronicus, 21 August 2016

The Firsts: Anandamide (1992)

seedling cannabis-1062908_1920
Cannabis, the plant whose psychoactive tetrahydrocannabinol (THC) binds to the same receptors in the brain as anandamide.

A rare tragedy took place in France a few days ago when a Phase I clinical trial for a new drug destined to improve mood and alleviate pain has resulted in one person dead and five other hospitalized. Phase I means that the drug successfully passed all animal tests and was being tried for the first time in humans to test its safety (efficacy and potency are tested in phase II and III, respectively).

The trial has been suspended and an investigation is on the way. So far, it appears that both the manufacturer (Bial) and the testing company (Biotrial) have followed all the guidelines and regulations. The running hypothesis is that the drug (BIA 10-2474) is acting on an unexpected target. What does that mean?

BIA 10-2474 is a FAAH inhibitor (fatty acid amide hydrolase). This enzyme breaks down anandamide, which is an endocannabinoid. In other words, is a neurotransmitter in the brain that binds to the same receptors as THC, the main active component of marijuana. So, if you give someone BIA 10-2474, the result would be an increase in the availability of anandamide, presumably with anxiolytic and analgesic effects (yes, similar to smoking weed).

There are other FAAH inhibitors out there that had been previously tried in humans and they were never marketed not because they were unsafe, but because they were ineffective in producing the desired results, i.e. less pain and/or anxiety.

So we don’t know yet why BIA 10-2474 killed people, but the bet is that in addition to FAAH, it also binds to some other protein. Why they didn’t discover this in animal trials, is a mystery; perhaps the unknown protein is unique to humans? By the looks of the drug’s structure, I think is computer generated, meaning is composed of a bunch of functional groups that someone put together in the hopes that it would fit neatly on the target binding site; but so many functional groups thrown in together might bind unexpectedly to other places than the intended. More on the story in Nature.

Anyway, that was the very long intro to today’s featured paper: the discovery of anandamide. Which happened very recently, in 1992, by the Mechoulam group at the Hebrew University of Jerusalem, Israel. Anandamide is the first endocannabinoid to be isolated. Mechoulam’s postodcs, William Devane and Lumir Hanus, used mass spectroscopy and NMR (nuclear magnetic resonance, MRI is an application of the same principles) to identify and isolate the molecule in a pig brain. And then they named it, fittingly, the “amide of bliss”…

Of note, members of the same Mechoulam group identified two more of the six known endocannabinoids. The three pages paper is highly technical, but I am assured (by a chemist) that is an easy-peasy read for any organic chemist.

Reference: Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, & Mechoulam R (18 Dec 1992). Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science, 258(5090):1946-9. PMID: 1470919, DOI: 10.1126/science.1470919.  Article | Research Gate Full Text

By Neuronicus, 18 January 2016

Have we missed the miracle painkiller?

How a classic pain scale would look to a person with congenital insensitivity to pain.
How a classic pain scale would look to a person with congenital insensitivity to pain.

Pain insensitivity has been introduced to the larger public via TV shows from the medical drama genre (House, ER, Gray’s Anatomy, and the like). It seems fascinating to explore the consequences of a life without pain. But these shows do not feature, quite understandably, the gruesome aspects of this rare and incredibly life threatening disorder. For example, did you know that sometimes the baby teeth of these people are extracted before they reach 1 year old so they stop biting their fingers and tongues off? Or that a good portion of the people born with pain insensitivity die before reaching adulthood?

Nahorski et al. (2015) discovered a new disorder that includes pain insensitivity, along with touch insensitivity, cognitive delay, and severe other disabilities. They investigated a family where the husband and wife are double first cousins and produced offsprings. The authors had access to all the family’s DNA, including the children. Extensive analyses revealed a mutation on the gene CLTCL1 that encodes for the protein CHC22. This protein is required for the normal development of the cells that fell pain and touch, among other things.

Other genetic studies into various syndromes of painlessness have produced data that lead to discovery of new analgesics. Therefore, the hope with this study is that CHC22 may become a target for a future painkiller discovery.

But, on the side note, what made me feature this paper is more than just the potential for new analgesics; is in the last paragraph of the paper: “rodents have lost CLTCL1 and thus must have alternative pathway(s) to compensate for this. Thus, some pain research results generated in these animals may not be applicable to man” (p. 2159).

The overwhelming majority of pain research and painkiller search is done in rodents. So…. how much from what we know from rodents and translate to humans doesn’t really apply? Worse yet, how many false negatives did we discard already? What if the panaceum universalis has been tried already in mice and nobody knows what it is because it didn’t work? It’s not like there is a database of negative results published somewhere where we can all ferret and, in the light of these new discoveries, give those loser chemicals another try…. Food for thought and yet ANOTHER reason why all research should be published, not just the positive results.

Reference: Nahorski MS, Al-Gazali L, Hertecant J, Owen DJ, Borner GH, Chen YC, Benn CL, Carvalho OP, Shaikh SS, Phelan A, Robinson MS, Royle SJ, & Woods CG. (August 2015, Epub 11 Jun 2015). A novel disorder reveals clathrin heavy chain-22 is essential for human pain and touch development. Brain, 138(Pt 8):2147-2160. doi: 10.1093/brain/awv149. Article | FREE FULLTEXT PDF

By Neuronicus, 20 October 2015