Interview with Jason D. Shepherd, PhD

During the first week of the publication, a Cell paper that I covered a couple of weeks ago has received a lot of attention from media outlets, like The Atlantic, Scicasts and Neuroscience News/University of Utah Press Release. It is not my intention to duplicate here their wonderfully done summaries and interviews; rather to provide answers to some geeky questions arisen from the minds of nerdy scientists like me.

Dr. Shepherd, you are the corresponding author of a paper published on Jan. 11 in Cell about a protein heavily involved in memory formation, called Arc. Your team and another team from University of Massachusetts, who published in the same issue of Cell, simultaneously discovered that Arc looks like and behaves like a virus. The protein “infects” nearby cells, in this case neurons, with instructions of how to make more of itself, i.e. it shuttles its own mRNA from one cell to another.

Neuronicus: Why is this discovery so important?

​Jason D. Shepherd: I think there’s a couple of big implications of this work:

  1. ​The so called “junk” DNA in our genomes that come from viruses and transposable elements actually provide source material for new genes. Arc isn’t the first example, but it’s the first prominent brain gene to have these kinds of origins.

  2. This is the first demonstration that cellular proteins are capable of assembling into capsid-like structures. This is a completely new way of thinking about communication between cells.

  3. We think there may be other genes that can also form capsids, suggesting this method of signaling is fairly common in organisms.

N: 2) When you and your colleagues compared Arc’s genetic sequence across species you concluded Arc comes from a virus that infected four-legged animals some time ago. A little time later the virus infected the flies too. When did these events occur?

​JDS: So we think the origins are from a retrotransposon not a virus. These are DNA sequences or elements that “jump” into the host genome. Think of them as primitive viruses. Indeed, these elements are thought to be the ancestors of retroviruses like HIV. The mammalian Arc gene seems to have originated ~400 million years ago, the fly about 150 million years ago. ​

N: 3) So, if Arc has been so successfully repurposed by the tetrapod and fly ancestors to add memory formation, what does that mean for the animals and insects before the infection? I understand that we move now in the realm of speculation, but who better to speculate on these things than the people who work on Arc? The question is: did these pre-infection creatures have bad and short memories? The alternate view would be that they had similar memory abilities due to a different mechanism that was replaced by Arc. Which one do you think is more likely?

​JDS: Good question. It’s certainly the case that memory capacity improved in tetrapods, but unclear if Arc is the sole reason. I suspect that Arc confers some unique aspects to brains, otherwise it would not have been so conserved after the initial insertion event, but I also think there are probably other Arc-like genes in other organisms that do not have Arc. I will also note that we are not even sure, yet, that the fly Arc is important for fly memory/learning.

N: 4) Remaining in the realm of speculation, if this intercellular mRNA transport proves to be ubiquitous for a variety of mRNAs, what does that say of the transcriptome of a cell at any given time? From a practical point of view, a cell is what is made off, meaning the ensemble of all its enzymes and proteins and so on, collectively termed transcriptome. So if a cell can just alter its neighbor’s transcriptome array, does that mean that it’s possible to alter also its function? Even more outrageously speculative, perhaps even its type? Can we make cancer cells commit suicide by shooting Arc capsules of mRNA at them?

​JDS: Yes! Cool ideas. I think this is quite likely, that these signaling extracellular vesicles can dramatically alter the state of a cell. We are obviously looking into this. ​

N: 5) Finally, in the paper, the Arc capsules containing mRNA are referred to as ACBAR (Arc Capsid Bearing Any RNA). At first I thought it was a reference to “Allahu akbar” which is Arabic for ‘God is greatest’, the allusion being “ACBAR! Our exosome is the greatest!” or “Arc Acbar! Our Arc is the greatest!”. Is this where the naming is coming from?

​JDS: No no. As I said on twitter, my lab came up with this acronym because we are all Star Wars nerds and the classic “It’s a trap!” line from general Ackbar seemed apt for something that was trapping RNA. ​

Below is the Twitter exchange Dr. Shepherd refers to:

129shepherd - Copy

Dr. Shepherd, thank you for your time! And congratulations on a well done paper and a well told story. Your Methods section is absolutely great; anybody can follow the instructions and replicate your data. Somebody in your lab must have kept great records. Congratulations again!

129_starwars - Copy
The ACBAR graphic is from the Cell’s abstract (©2017 Elsevier Inc.) but since it’s for comedic purposes, I’d say is fair use. Same for the Lego Ackbar.

By Neuronicus, 28 January 2018

P. S. Since I have obviously managed to annoy the #StarWars universe and twitterverse because I depicted General Ackbar using a Jedi sword when he’s not a Jedi, I thought only fair to annoy the other half of the world, the #trekkies. So here you go:

129_startrek - Copy.jpg

 

Arc: mRNA & protein from one neuron to another

EDIT 1 [Jan 17, 2018]: I promised four days ago that I will post this, while it was still hot, but my Internet was down, thanks to the only behemoth provider in USA. And rated the worst company in the Nation, too. You definitely know by now about whom I’m talking about. Grrrr…  Anyway, here is the paper:

As promised, today’s paper talks about mRNA transfer between neurons.

Pastuzyn et al. (2018) looked at the gene Arc in neurons because they thought its Gag sequence looks suspiciously similar to some retroviruses. Could it be possible that it also behaves like a virus?

Arc is heavily involved in the immune system, is essential for the formation of long-term memories, and is involved in all sorts of diseases, like schizophrenia and Alzheimer’s, among other things.

Pastuzyn et al. (2018) is a relatively long and dense paper, albeit well written. So, I thought that this time, instead of giving you a summary of their research it would be better to give you the authors’ story directly in their own words written as subtitles in the Results section (bold letters – the authors words, normal font – mine). Warning: this is a much more jargon-dense blog post than my previous one on the same topic and, because it is so much material, I will not explain every term.

  • Fly and Tetrapod (us) Arc Genes Independently Originated from Distinct Lineages of Ty3/gypsy Retrotransposons, the phylogenomic analyses tell us, meaning the authors have done a lot of computer-assisted comparisons of similar forms of the gene in hundreds of species.
  • Arc Proteins Self-Assemble into Virus-like Capsids. Arc likes to oligomerize spontaneously (dimers and trimers). The oligomers resemble virus-like capsids, similar to HIV.
  • Arc Binds and Encapsulates RNA. Although it loves its own RNA about 10 times more than other RNAs, it’s a promiscuous protein (doesn’t care which RNA as long as it follows the rules of stoichiometry). Arc capsids encapsulate both the Arc protein (maybe other proteins too?), its mRNA, and whatever mRNA happened to be in the vicinity at the time of encapsulation. Arc capsids are able to protect the mRNA from RNAases.
  • Arc Capsid Assembly Requires RNA. If there is no RNA around, the capsids are few and poorly formed.
  • Arc Protein and Arc mRNA Are Released by Neurons in Extracellular Vesicles. Arc capsid packages Arc protein & Arc mRNA into extracellular vesicles (EV). The size of these EVs is < 100nm, putting them in the exosome category. This exosome, which the authors gave the unfortunate name of ACBAR (Arc Capsid Bearing Any RNA), is being expelled from cortical neurons in an activity-dependent manner. In other words, when neurons are stimulated, they release ACBARs.
  • Arc Mediates Intercellular Transfer of mRNA in Extracellular Vesicles. ACBARs dock to the host cell and then undergo clathrin-dependent endocytosis, meaning they expel their cargo in the host cell. The levels of Arc protein and Arc mRNA peaks in a host hippocampal cell in four hours from incubation. The ACBARs tend to congregate around donor cell’s dendrites.
  • Transferred Arc mRNA Can Undergo Activity-Dependent Translation. Activating the group 1 metabotropic glutamate receptor (mGluR1/5) by application of the agonist DHPG induces a significant increase of the amount of Arc protein in the host neurons.

This is a veritable tour de force paper. The Results section has 7 sub-sections, each with multiple experiments to dot every i and cross every t. I’m eyeballing about 40 experiments. It is true that there are 13 authors on the paper from different institutions – yeay for collaboration! – but c’mon! Is this what you need to get in Cell these days? Apparently so. Don’t get me wrong, this is an outstanding paper. But in the end it is still only one paper, which means only one first author. The rest are there for the ride because for a tenure track application nobody cares about your papers in CNS (Cell, Nature, Science = The Central Nervous System of the scientific community, har, har) if you’re not the first author. It looks like the increasing amount of work you need to be published in top tier journals these days is becoming a pet peeve of mine as I keep mentioning it (for example, here).

My pet peeves aside, Pastuzyn et al. (2018) is an excellent paper that opens interesting practical (drug delivery) and theoretical (biological repurpose of ancient invaders) gates. Kudos!

128-1 - Copy

REFERENCE: Pastuzyn ED, Day CE, Kearns RB, Kyrke-Smith M, Taibi AV, McCormick J, Yoder N, Belnap DM, Erlendsson S, Morado DR, Briggs JAG, Feschotte C, & Shepherd JD. (11 Jan 2018). The Neuronal Gene Arc Encodes a Repurposed Retrotransposon Gag Protein that Mediates Intercellular RNA Transfer. Cell, 172(1-2):275-288.e18. PMID: 29328916. doi: 10.1016/j.cell.2017.12.024. ARTICLE | FULLTEXT PDF via ResearchGate

P.S. I said that ACBAR is an unfortunate acronym because I don’t know about you but I for one wouldn’t want my discovery to be linked either with a religion or with terrorist cries, even if that link is done only by a small fraction of the population. Although I can totally see the naming-by-committee going: “ACBAR! Our exosome is the greatest! Yeay!” or “Arc Acbar! Our Arc is the greatest. Double yeay!”. On a second thought, it’s kindda nerdy geeky neat. I still wouldn’t have done it though…

By Neuronicus, 14 January 2018

EDIT 2 [Jan 22, 2018]: There is another paper that discovered that Arc forms capsids that encapsulate RNA and then shuttles it across the neuromuscular junction in Drosophila (fly). To their credit, Cell published both these papers back-to-back so no researcher gets scooped of their discovery. From what I can see, the discovery really happened simultaneously, so I modified my infopic to reflect that (both papers were submitted in January 2017, received in revised version on August 15, 2017 and published in the same issue on January 11, 2018). Here is the reference to the other article:

Ashley J, Cordy B, Lucia D, Fradkin LG, Budnik V, & Thomson T (11 Jan 2018). Retrovirus-like Gag Protein Arc1 Binds RNA and Traffics across Synaptic Boutons, Cell. 172(1-2): 262-274.e11. PMID: 29328915. doi: 10.1016/j.cell.2017.12.022. ARTICLE

EDIT 3 [Jan 29, 2018]: Dr. Shepherd, the last author of the paper I featured, was kind enough to answer a few of my questions about the implications of his and his team’s findings, answers which you will find here.

By Neuronicus, 22 January 2018

The FIRSTS: the von Economo neurons (1881, 1904, 1926)

A von Economo neuron, also known as a spindle neuron, is a unique cell with several interesting characteristics:

1) It has a long axon and on the opposite side of the cell body has only one long dendrite, resembling a spindle and hence the nickname.

2) It is to be found only in humans, apes, elephants, dolphins, whales, and a few other animals known for their intricate social structure.

3) In humans, they exist only in the frontal part of the brain.

4) It is thought to be important for social awareness.

In all fairness, these cells should be called Betz cells, or at least Ramón y Cajal cells because these neuroanatomists mentioned their existence in 1881 and 1904, respectively. But Betz already has his own neurons, and Ramón y Cajal, well… his fame is established already. But von Economo “made a more complete description of their morphology and mapped their specific locations in human cortex” (Allman et al., 2011)

So what do we know about von Economo? Quite a lot, thanks to Triarhou, an excellent biographer. Constantin von Economo (1876–1931) was born in Brăila, Romania to a wealthy family of Greek descent. Shorty after his birth, the family moved from Romania to Austria where the father acquired a “von” in front of his name by way of elevation to the rank of baron.

Von Economo went to medical school  in Vienna, traveled a lot across the globe, graduated, spent some more time here and there learning psychiatry, physiology, neurology and such with some Big Names, then returned to Vienna where he followed the classic academic path (for his time). He was a prolific writer, having published at least 139 scientific works in a relatively short time.

Besides the spindle neurons, he is also known for publishing an awesome brain atlas in 1925 (with Georg Koskinas) and for investigating in detail a mysterious and weird disease, encephalitis lethargica (the ‘von Economo disease’). This disease has unknown causes to the day, partly because it is very difficult to study, having virtually disappeared form the face of the Earth after a furious epidemic in 1926.  But about that enigma some other time.

For now, enjoy von Economo’s drawings.

von-economo-copy
Composite image of the four drawings by von Economo (1926) in doi:10.1007/BF02970950.

Notes: 1) One last thing. Although according to Springer’s website the copyright for the von Economo paper I’m citing should have expired, Springer still charges a lot of money to obtain it (if you don’t have an institutional license like some of us, the fortunates, that is). I have attempted to contact Springer about it with no luck. Anyway, if you want it, email me at scientiaportal@gmail.com. It’s been more than 70 years since the death of the author, so it should be public domain.

2) I have no idea why people reference the Ramón y Cajal’s Textura del Sistema Nervioso del Hombre y de los Vertebrados as published in 1889. I got it from Google Books and it says 1904 on it.

References:

  1. von Economo, C. (1926). Eine neue Art Spezialzellen des Lobus cinguli und Lobus insulae (‘A new kind of special cells in the cingulum and insula’). Zeitschr. Ges. Neurol Psychiatr (Berlin), 100: 706–712. DOI: 10.1007/BF02970950. ARTICLE
  2. Allman JM, Tetreault NA, Hakeem AY, Manaye KF, Semendeferi K, Erwin JM, Park S, Goubert V, & Hof PR (Apr 2011). The von Economo neurons in the frontoinsular and anterior cingulate cortex. Annals of the New York Academy of Sciences, 1225:59-71. PMID: 21534993. PMCID: PMC3140770. DOI: 10.1111/j.1749-6632.2011.06011.x. ARTICLE | FREE FULLTEXT PDF 
  3. Triarhou, LH (14 Apr 2006, Epub 28 Feb 2006). The signalling contributions of Constantin von Economo to basic, clinical and evolutionary neuroscience. Brain Research Bulletin, 69 (3): 223–243. PMID: 16564418, DOI: 10.1016/j.brainresbull.2006.02.001. ARTICLE

By Neuronicus, 25 September 2016

Who invented optogenetics?

Wayne State University. Ever heard of it? Probably not. How about Zhuo-Hua Pan? No? No bell ringing? Let’s try a different approach: ever heard of Stanford University? Why, yes, it’s one of the most prestigious and famous universities in the world. And now the last question: do you know who Karl Deisseroth is? If you’re not a neuroscientist, probably not. But if you are, then you would know him as the father of optogenetics.

Optogenetics is the newest tool in the biology kit that allows you to control the way a cell behaves by shining a light on it (that’s the opto part). Prior to that, the cell in question must be made to express a protein that is sensitive to light (i.e. rhodopsin) either by injecting a virus or breeding genetically modified animals that express that protein (that’s the genetics part).

If you’re watching the Nobel Prizes for Medicine, then you would also be familiar with Deisseroth’s name as he may be awarded the Nobel soon for inventing optogenetics. Only that, strictly speaking, he did not. Or, to be fair and precise at the same time, he did, but he was not the first one. Dr. Pan from Wayne State University was. And he got scooped.98.png

The story is at length imparted to us by Anna Vlasits in STAT and republished in Scientific American. In short, Dr. Pan, an obscure name in an obscure university from an ill-famed city (Detroit), does research for years in an unglamorous field of retina and blindness. He figured, quite reasonably, that restoring the proteins which sense light in the human eye (i.e. photoreceptor proteins) could restore vision in the congenitally blind. The problem is that human photoreceptor proteins are very complicated and efforts to introduce them into retinas of blind people have proven unsuccessful. But, in 2003, a paper was published showing how an algae protein that senses light, called channelrhodopsin (ChR), can be expressed into mammalian cells without loss of function.

So, in 2004, Pan got a colleague from Salus University (if Wayne State University is a medium-sized research university, then Salus is a really tiny, tiny little place) to engineer a ChR into a virus which Pan then injected in rodent retinal neurons, in vivo. After 3-4 weeks he obtained the expression of the protein and the expression was stable for at least 1 year, showing that the virus works nicely. Then his group did a bunch of electrophysiological recordings (whole cell patch-clamp and voltage clamp) to see if shining light on those neurons makes them fire. It did. Then, they wanted to see if ChR is for sure responsible for this firing and not some other proteins so they increased the intensity of the blue light that their ChR is known to sense and observed that the cell responded with increased firing. Now that they saw the ChR works in normal rodents, next they expressed the ChR by virally infecting mice who were congenitally blind and repeated their experiments. The electrophysiological experiments showed that it worked. But you see with your brain, not with your retina, so the researchers looked to see if these cells that express ChR project from the retina to the brain and they found their axons in lateral geniculate and superior colliculus, two major brain areas important for vision. Then, they recorded from these areas and the brain responded when blue light, but not yellow or other colors, was shone on the retina. The brain of congenitally blind mice without ChR does not respond regardless of the type of light shone on their retinas. But does that mean the mouse was able to see? That remains to be seen (har har) in future experiments. But the Pan group did demonstrate – without question or doubt – that they can control neurons by light.

All in all, a groundbreaking paper. So the Pan group was not off the mark when they submitted it to Nature on November 25, 2004. As Anna Vlasits reports in the Exclusive, Nature told Pan to submit to a more specialized journal, like Nature Neuroscience, which then rejected it. Pan submitted then to the Journal of Neuroscience, which also rejected it. He submitted it then to Neuron on November 29, 2005, which finally accepted it. Got published on April 6, 2006. Deisseroth’s paper was submitted to Nature Neuroscience on May 12, 2005, accepted on July, and published on August 14, 2005… His group infected rat hippocampal neurons cultured in a Petri dish with a virus carrying the ChR and then they did some electrophysiological recordings on those neurons while shining lights of different wavelengths on them, showing that these cells can be controlled by light.

There’s more on the saga with patent filings and a conference where Pan showed the ChR data in May 2005 and so on, you can read all about it in Scientific American. The magazine is just hinting to what I will say outright, loud and clear: Pan didn’t get published because of his and his institution’s lack of fame. Deisseroth did because of the opposite. That’s all. This is not about squabbles about whose work is more elegant, who presented his work as a scientific discovery or a technical report or whose title is more catchy, whose language is more boisterous or native English-speaker or luck or anything like that. It is about bias and, why not?, let’s call a spade a spade, discrimination. Nature and Journal of Neuroscience are not caught doing this for the first time. Not by a long shot. The problem is that they are still doing it, that is: discriminating against scientific work presented to them based on the name of the authors and their institutions.

Personally, so I don’t get comments along the lines of the fox and the grapes, I have worked at both high profile and low profile institutions. And I have seen the difference not in the work, but in the reception.

That’s my piece for today.

Source:  STAT, Scientific American.

References:

1) Bi A, Cui J, Ma YP, Olshevskaya E, Pu M, Dizhoor AM, & Pan ZH (6 April 2006). Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron, 50(1): 23-33. PMID: 16600853. PMCID: PMC1459045. DOI: 10.1016/j.neuron.2006.02.026. ARTICLE | FREE FULLTEXT PDF

2) Boyden ES, Zhang F, Bamberg E, Nagel G, & Deisseroth K. (Sep 2005, Epub 2005 Aug 14). Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience, 8(9):1263-1268. PMID: 16116447. DOI: 10.1038/nn1525. doi:10.1038/nn1525. ARTICLE 

By Neuronicus, 11 September 2016

Save

Save

Save

Save

THE FIRSTS: The Mirror Neurons (1988)

There are some neurons in the human brain that fire both when the person is doing some behavior and when watching that behavior performed by someone else. These cells are called mirror neurons and were first discovered in 1988 (see NOTE) by a group of researchers form the University of Parma, Italy, led by Giacomo Rizzolatti.

The discovery was done by accident. The researchers were investigating the activity of neurons in the rostral part of the inferior premotor cortex (riPM) of macaque monkeys with electrophysiological recordings. They placed a box in front of the monkey which had various objects in it. When the monkey pressed a switch, the content of the box was illuminated, then a door would open and the monkey reached for an object. Under each object was hidden a small piece of food. Several neurons were discharging when the animal was grasping the object. But the researchers noticed that some of these neurons ALSO fired when the monkey was motionless and watching the researcher grasping the objects!

The authors then did more motions to see when exactly the two neurons were firing, whether it’s related to the food or threatening gestures and so on. And then they recorded from some 182 more neurons while the monkey or the experimenter were performing hand actions with different objects. Importantly, they also did an electromyogram (EMG) and saw that when the neurons that were firing when the monkey was observing actions, the muscles did not move at all.

They found that some neurons responded to both when doing and seeing the actions, whereas some other neurons responded only when doing or only when seeing the actions. The neurons that are active when observing are called mirror neurons now. In 1996 they were identified also in humans with the help of positron emission tomography (PET).

88mirror - Copy
In yellow, the frontal region; in red, the parietal region. Credits: Brain diagram by Korbinian Brodmann under PD license; Tracing by Neuronicus under PD license; Area identification and color coding after Rizzolatti & Fabbri-Destro (2010) © Springer-Verlag 2009.

It is tragicomical that the authors first submitted their findings to the most prestigious scientific journal, Nature, believing that their discovery is worth it, and rightfully so. But, Nature rejected their paper because of its “lack of general interest” (Rizzolatti & Fabbri-Destro, 2010)! Luckily for us, the editor of Experimental Brain Research, Otto Creutzfeld, did not share Nature‘s opinion.

Thousands of experiments followed the tremendous discovery of mirror neurons, even trying to manipulate their activity. Many researchers believe that the activity of the mirror neurons is fundamental for understanding the intentions of others, the development of theory of mind, empathy, the process of socialization, language development and even human self-awareness.

NOTE: Whenever possible, I try to report both the date of the discovery and the date of publication. Sometimes, the two dates can differ quite a bit. In this case, the discovery was done in 1988 and the publishing in 1992.

 References:

  1. di Pellegrino G, Fadiga L, Fogassi L, Gallese V, & Rizzolatti G (October 1992). Understanding motor events: a neurophysiological study. Experimental Brain Research, 91(1):176-180. DOI: 10.1007/BF00230027. ARTICLE  | Research Gate FULLTEXT PDF
  2. Rizzolatti G & Fabbri-Destro M (Epub 18 Sept 2009; January 2010). Mirror neurons: From discovery to autism. Experimental Brain Research, 200(3): 223-237. DOI: 10.1007/s00221-009-2002-3. ARTICLE  | Research Gate FULLTEXT PDF 

By Neuronicus, 15 July 2016

Autism cure by gene therapy

shank3 - Copy

Nothing short of an autism cure is promised by this hot new research paper.

Among many thousands of proteins that a neuron needs to make in order to function properly there is one called SHANK3 made from the gene shank3. (Note the customary writing: by consensus, a gene’s name is written using small caps and italicized, whereas the protein’s name that results from that gene expression is written with caps).

This protein is important for the correct assembly of synapses and previous work has shown that if you delete its gene in mice they show autistic-like behavior. Similarly, some people with autism, but by far not all, have a deletion on Chromosome 22, where the protein’s gene is located.

The straightforward approach would be to restore the protein production into the adult autistic mouse and see what happens. Well, one problem with that is keeping the concentration of the protein at the optimum level, because if the mouse makes too much of it, then the mouse develops ADHD and bipolar.

So the researchers developed a really neat genetic model in which they managed to turn on and off the shank3 gene at will by giving the mouse a drug called tamoxifen (don’t take this drug for autism! Beside the fact that is not going to work because you’re not a genetically engineered mouse with a Cre-dependent genetic switch on your shank3, it is also very toxic and used only in some form of cancers when is believed that the benefits outweigh the horrible side effects).

In young adult mice, the turning on of the gene resulted in normalization of synapses in the striatum, a brain region heavily involved in autistic behaviors. The synapses were comparable to normal synapses in some aspects (from the looks, i.e. postsynaptic density scaffolding, to the works, i.e. electrophysiological properties) and even more so in others (more dendritic spines than normal, meaning more synapses, presumably). This molecular repair has been mirrored by some behavioral rescue: although these mice still had more anxiety and more coordination problems than the control mice, their social aversion and repetitive behaviors disappeared. And the really really cool part of all this is that this reversal of autistic behaviors was done in ADULT mice.

Now, when the researchers turned the gene on in 20 days old mice (which is, roughly, the equivalent of the entering the toddling stage in humans), all four behaviors were rescued: social aversion, repetitive, coordination, and anxiety. Which tells us two things: first, the younger you intervene, the more improvements you get and, second and equally important, in adult, while some circuits seem to be irreversibly developed in a certain way, some other neural pathways are still plastic enough as to be amenable to change.

Awesome, awesome, awesome. Even if only a very small portion of people with autism have this genetic problem (about 1%), even if autism spectrum disorders encompass such a variety of behavioral abnormalities, this research may spark hope for a whole range of targeted gene therapies.

Reference: Mei Y, Monteiro P, Zhou Y, Kim JA, Gao X, Fu Z, Feng G. (Epub 17 Feb 2016). Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature. doi: 10.1038/nature16971. Article | MIT press release

By Neuronicus, 19 February 2016

Save

The FIRSTS: Betz pyramidal neurons (1874)

Plate86betz
Betz cell in the dog cortex. Copyright: RA Bergman, AK Afifi, PM Heidger, & MP D’Alessandro. Pic taken from here.

Bigger that Purkinje cerebellar neurons, the Betz pyramidal neurons (aka the giant pyramidal neurons) can have up to 100 micrometers in diameter. They are located in the fifth layer of the grey matter in the primary motor cortex. And they were discovered by a Ukrainian who did not receive the just place he deserves in the history of neuroscience, as most books on the subject ignore him. So let’s give him some attention.

Vladimir Alekseyevich Betz (1834–1894) was a professor of anatomy and a histologist at the Kiev University. Just like with Pavlov, sometimes there is nothing spectacular or weird or bizarre in the life of a great thinker. Betz was a child of a relatively wealthy family, went to good schools, then to Medical School, where he showed interest in the anatomy department. He continued his postgraduate studies in the West (that is Germany and Austria) after which he returned home where he got a position as a professor at his Alma Mater where he stayed until he died of heart problems at the age of 60.

Vladimir_Betz
Vladimir Alekseyevich Betz (1834 – 1894), License: PD

During his PhD, which was on the blood flow in the liver, Betz discovered an interest in histology. He was unsatisfied with the quality of the existing staining methods, so he worked for years to improve the fixation and staining methods of the brain tissue. His new methods allowed the cutting and preserving very thin slices and then he described what he saw. But Betz’s genius was in linking his cortical cytoarchitechtonic findings with physiological function, dividing the cortex into the motor and sensory areas. He also made revolutionary observations of the anatomical organization and development and various pathologies.

Original reference (which I did not find): Betz W (1874). Anatomischer Nachweis zweier Gehirncentra. Centralblatt für die medizinischen Wissenschaften. 12:578-580, 595-599.

Reference: Kushchayev SV, Moskalenko VF, Wiener PC, Tsymbaliuk VI, Cherkasov VG, Dzyavulska IV, Kovalchuk OI, Sonntag VK, Spetzler RF, & Preul MC (Jan 2012, Epub 10 Nov 2011). The discovery of the pyramidal neurons: Vladimir Betz and a new era of neuroscience. Brain, 135(Pt 1):285-300. doi: 10.1093/brain/awr276.  ArticleFREE FULLTEXT PDF

By Neuronicus, 17 December 2015

The FIRSTS: Axon description (1865)

Human medulla oblongata sectioned at the level of the olivary nuclei. Drawing by Deiters (1965). Original caption: Fig. 15. Durchschnitt der medulla oblongata des Menschen in der Höhe der Olive (OL). R.R Raphe, Hyi). Nervus hypoglossus. Vag. Nervus vagus, deren Kerne in V und H liegen, aber in der Zeichnung nicht feiner ausgeführt sind. Den Haupttlißil der Figur nimmt die Formatio reticularis ein mit ihren zerstreuten Ganglienzellen, und die Olive mit den zu ihr hinzutretenden Fasern des Stratum zonale; C.c crura cerebelli ad medullam oblongatam; P Pyramidenstrang.
Human medulla oblongata sectioned at the level of the olivary nuclei. Drawing by Deiters (1865). Original caption: “Fig. 15. Durchschnitt der medulla oblongata des Menschen in der Höhe der Olive (OL). R.R Raphe, Hyi). Nervus hypoglossus. Vag. Nervus vagus, deren Kerne in V und H liegen, aber in der Zeichnung nicht feiner ausgeführt sind. Den Haupttlißil der Figur nimmt die Formatio reticularis ein mit ihren zerstreuten Ganglienzellen, und die Olive mit den zu ihr hinzutretenden Fasern des Stratum zonale; C.c crura cerebelli ad medullam oblongatam; P Pyramidenstrang”.

In 1863, using the microscope, a german neuroanatomist from the University of Bonn by the name of Otto Friedrich Karl Deiters describes in exquisite detail the branch-like processes of the neuron (i. e. dendrites) and the long, single “axis cylinder” (i.e. axon). Deiters’ nucleus is named after him (the place where a good portion of the cranial nerve VIII ends).

The book with the findings is published in German, posthumously (in 1865), with preface and under the editorial guidance of Max Schultze, another famous German anatomist. I got the information from Debanne et al. (2011), which is nice review on axon physiology (my German is kindda rusty due to lack of use). But I got my hands on the original German book (see link below) and, like a kid that doesn’t know how to read yet, all I could do was marvel at the absolutely stunning drawings by OFK Deiters. Which are truly and unequivocally beautiful. See for yourself.

Neurons with axons and dendrites. Drawings buy Deiters (1865.)
Neurons with axons and dendrites. Drawings by Deiters (1865.)

Reference: Debanne D, Campanac E, Bialowas A, Carlier E, & Alcaraz G (April 2011). Axon physiology. Physiological Reviews, 91(2):555-602. doi: 10.1152/physrev.00048.2009. Article | FREE FULLTEXT PDF

Original citation: Deiters OFK (1865). Untersuchungen über Gehirn und Rückenmark des Menschen und der Säugethiere. Ed. Max Schultze, Braunschweig: Vieweg, 1865. doi: 10.5962/bhl.title.15270. Book | PDF

By Neuronicus, 24 October 2015

Making new neurons from glia. Fully functional, too!

NeuroD1 transforms glial cells into neurons. Summary of the first portion of the Guo et al. (2014) paper.
Fig. 1. NeuroD1 transforms glial cells into neurons. Summary of the first portion of the Guo et al. (2014) paper.

Far more numerous than the neurons, the glial cells have many roles in the brain, one of which is protecting an injury site from being infected. In doing so, they fill up the injury space, but they also prohibit other neurons to grow there.

Guo et al. (2015) managed to turn these glial cells into neurons. Functioning neurons, that is, fully integrated within the rest of the brain network! They did it in a mouse model of stab injury and a mouse model of Alzeihmer’s in vivo. Because a mouse is not a man, they also metamorphosized human astrocytes into functioning glutamatergic neurons in a Petri dish, that is in vitro.

It is an elegant paper that crossed all the Ts and dotted all the Is. They went to a lot of double checking in different ways (see Fig. 1) to make sure their fantastic claim is for real (this kind of double, triple, quadruple checking is what gets a paper into the Big Name journals, like Cell). Needles to say, the findings show a tremendous therapeutic potential for people with central nervous system injuries, like paralyses, strokes, Alzheimer’s, Parkinson’s, Huntington, tumor resections, and many many more. Certainly worth a read!

Reference: Guo Z, Zhang L, Wu Z, Chen Y, Wang F, & Chen G (6 Feb 2014, Epub 19 Dec 2013). In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell, 14(2):188-202. doi: 10.1016/j.stem.2013.12.001. Article | FREE FULLTEXT PDF | Cell cover

By Neuronicus, 18 October 2015

I can watch you learning

Human Stereotaxic System. Photo credit: The Mind Project
Human Stereotaxic System. Photo credit: The Mind Project

Recording directly form the healthy living human brain has always been a coveted goal of many neuroscientists, thus bypassing the limitations of non-invasive techniques or animal work. But, understandably, nobody would seek or grant approval for inserting an electrode in the healthy living human brain, on moral and ethical grounds. The next best thing is to insert an electrode into the not so healthy living human brain.

Ison, Quiroga, & Fried (2015) got lucky and gained access to 14 patients with intractable epilepsy that had electrodes implanted in their brain to find where the seizure focus is (for possible surgical resection later on). Using these electrodes, they recorded the activity of single neurons within the medial temporal lobe (MTL, a brain area paramount for learning) while the patients performed some simple association tasks. First, they presented images of places, people, and animals to the patients to see “which (if any) of the recorded neurons responded to a picture” (p. 220). When they got a neuron responding to something, they rushed out, did some data and image processing, and after an hour they started the experiment. Which was showing the patient the picture to which the neuron responded to (e.g. Stimulus 1 = patient’s daughter) overimposed on a background that the neuron did not respond to (e.g. Stimulus 2 = the Eiffel tower). After one single trial (although there was some variability), the patients learned the associations (i.e. Stimulus 3 = daughter in front of Eiffel tower) and this learning was mirrored by how the neuron responded. Namely, the neuron increased its activity by 200% to 400% (counted in spikes per second) when shown the previously un-responded to image alone (i.e. Stimulus 2).

Excerpt from Fig. 5 from Ison, Quiroga, & Fried (2015).
Excerpt from Fig. 5 from Ison, Quiroga, & Fried (2015). “Average normalized neural activity (black squares) and behavioral responses (green circles) to the non-preferred stimulus as a function of trial number. Data were aligned to the learning time (relative trial number 0)”, i.e. when they showed the composite image between Stimulus 1 and Stimulus 2. “Note that the neural activity follows the sudden increase in behavioral learning”.

The authors recorded from over 600 neurons from various MTL regions, out of which 51 responded to a Stimulus 1. From these, only half learned, that is, they increased their activity when Stimulus 2 was shown. For the picky specialist, the cells were both Type 1 and Type 2 neurons, located 6 in the hippocampus, 4 in the entorhinal cortex, 11 in the parahippocampal cortex, and 1 in the amygdala. And the authors controlled for familiarity, attentional demands, and other extraneous variables (with some very fancy and hard to follow stats, I might add).

The paper settles an old psychology dispute. Do we learn an association gradually or at once? In other words, do we learn gradually that A and B occur together, or do we learn that the first time we are shown A and B together and the next trials serve just to refine and consolidate the new knowledge? Ison, Quiroga, & Fried (2015) data show that learning happens at once, in an all-or-none fashion.

Reference: Ison, M. J., Quian Quiroga, R., & Fried, I. (1 July 2015). Rapid Encoding of New Memories by Individual Neurons in the Human Brain. Neuron, 87(1): 220-30. doi: 10.1016/j.neuron.2015.06.016. Article | FREE PDF

By Neuronicus, 4 October 2015