The FIRSTS: Magnolia (1703)

It is April and the Northern Hemisphere is enjoying the sight and smell of blooming magnolias. Fittingly, today is the birthday of the man who described and named the genus. Charles Plumier (20 April 1646 – 20 November 1704) was a French botanist known for describing many plant genera and for preceding Linnaeus in botanical taxonomy. His (Plumier’s) taxonomy was later incorporated by Linnaeus and is still in use today.

Plumier traveled a lot as part of his job as Royal Botanist at the court of Louis XIV. Don’t envy him too much though because the monk order to which he belonged, the Minims, forced him to be a vegan, living mostly on lentil.

Among thousands of other plants described was the magnolia, a genus of gorgeous ornamental flowering trees that put out spectacularly big flowers in the Spring, usually before the leaves come out. Plumier found it in the island of Martinique and named it after Pierre Magnol, a contemporary botanist who invented the concept of family as a distinct taxonomical category.

plate 1703 - Copy
Excerpts from the pages 38, 39 and plate 7 from Nova Plantarum Americanum Genera by Charles Plumier (Paris, 1703) describing the genus Magnolia.

Interestingly enough, Plumier named other plants either after famous botanists like fuchsia (Leonhard Fuchs) and lobelia (Mathias Obel) or people who helped his career as in begonia (Micheal Begon) and suriana (Josephe Donat Surian), but never after himself. I guess he took seriously the humility tenet of his order. Never fear, the botanists Joseph Pitton de Tournefort and the much more renown Carl Linnaeus named an entire genus after him: Plumeria.

Of interest to me, as a neuroscientist, is that the bark of the magnolia tree contains magnolol which is a natural ligand for the GABAA receptor.

116 - Copy

REFERENCE: Plumier, C. (1703). Nova Plantarum Americanum Genera, Paris. FULLTEXT courtesy of the Biodiversity Heritage Library

By Neuronicus, 20 April 2017



The FIRSTS: Melatonin (1958)

By the late 18th and beginning of 19th century, some scientists were busily investigating how animals get their colors and how do they change colour in response to the environment. They identified several types of chromatophores, i.e. cells that contain pigments. Biological pigments are called melanins (don’t confuse them with melatonin). One of these cells is the melanophore which contains black pigments, called this way in the very typical scientist unimaginative style because “melas” in Greek means black or dark and “phoros” means carrier.

A couple of these scientists, McCord & Allen (1917), thought that the pineal gland from the brain might contain some substance that might interact with the melanophores. How did they get this idea is unclear from their paper; seems like a logical outcome of their contemporaries’ discussions and experiments, though they do not explain it in detail. They hint of other experiments where various glands have been fed to amphibians and then noticed their color change. So McCord & Allen obtained cow brains, extracted the pineal glands and fed them to tadpoles. Within 30 to 60 minutes, depending on the concentration, the tadpoles fed with pineal extract changed color from dark to light (see picture).

mccord1917 - Copy
Excerpt from McCord & Allen (1917, doi: 10.1002/jez.1400230108) showing the change in tadpole skin appearance after application of bovine pineal gland extract.

Fast forward now to 1958 when an MD PhD called Aaron B. Lerner with an interest in dermatology thought that whatever was responsible for the skin color changes in the McCord & Allen (1917) paper might be useful in treating skin diseases. But first he had to extract the substance from the pineal glands and he and his colleagues had better tools for this task than the mere alcohol and acetone of his brethren of 40 years ago.

Lerner et al. (1958) made full use of the then-recently discovered paper chromatography and some standard biochemistry techniques for the time like Soxhlet extraction and fluorescence spectroscopy and discovered a substance that can lighten frog skin color and can inhibit the melanocyte stimulating hormone (MSH). “It is suggested that this substance be called melatonin” (p. 2587). Lerner and his colleagues also isolated the MSH and cryoglobulin.

Changing skin color is one of melatonin’s minor roles; its main function is to regulate circadian rhythms like sleep and awake cycles in animals (it has an oxidative stress protection in plants). Melatonin, in animals, is produced by the pineal gland only, more during the night, less during the day. Pineal gets information about the day/night cycles from the eyes. In some countries melatonin is sold as an over the counter soporific, i.e. sleeping pill.

Melatonin - Copy


1) McCord CP & Allen FP (Jan 1917). Evidences associating pineal gland function with alterations in pigmentation. Journal of Experimental Zoology, Part A, 23 (1):  207–224, DOI: 10.1002/jez.1400230108 ARTICLE 

2) Lerner AB, Case JD, Takahashi Y, Lee TH, & Mori W (May 1958). Isolation of Melatonin, the Pineal Gland Factor that Lightens Melanocytes. Journal of the American Chemical Society, 80 (10), p. 2587–2587, DOI: 10.1021/ja01543a060 ARTICLE (although JACS gives access only to the first page of a paper, the fact that this article is only half a page makes their endeavour useless in this case)

By Neuronicus, 18 March 2017



100% Effective Vaccine

A few days ago I was reading random stuff on the internet, as is one’s procrastination proclivity, catching up after the holiday, and I exclaimed out loud: “They discovered an 100% effective Ebola Vaccine!”. I expected some ‘yeay’-s or at least some grunts along the lines of ‘that’s nice’ or ‘cool’. Naturally, I turned around from my computer to check the source of unaccustomed silence to the announcement of such good news or, at least, to make sure that everybody is still breathing and present in the room. What met my worried glare was a gloom face and a shaking head. That’s because news like that are misleading, because, duh, it finally dawned on me, there is no such thing as ‘100% effective vaccine’.

And yet…, and yet this is exactly what Henao-Restrepo et al. (2016) say they found! The study is huge, employing more that 10 000 people. Such a tremendous endeavor has been financed by WHO (World Health Organization) and various departments from several countries (UK, USA, Switzerland, South Africa, Belgium, Germany, France, Guinea, and Norway) and, I’m assuming, a lot of paid and unpaid volunteers. I cannot even imagine the amount of work and the number of people that made this happen. And the coordination required for such speedy results!

The successful vaccine in rodents and non-human primates, called the recombinant, replication-competent, vesicular stomatitis virus-based vaccine expressing the glycoprotein of a Zaire Ebolavirus (rVSV-ZEBOV) has been taken to the Republic of Guinea and rapidly administered to volunteers who were in contact with somebody that had Ebola symptoms. And their contacts. I mean the contacts and the contacts of contacts of the Ebola patient. Who were contacted by the researchers within 2 days of a new Ebola case based on the patient’s list of contacts. And of contacts of contacts. Is not that complicated, honest.

After vaccinations, the “vaccinees were observed for 30 min post-vaccination and at home visits on days 3, 14, 21, 42, 63, and 84” (p.4). Some volunteers received the vaccine immediately, others after 3 weeks. No one who received the vaccine immediately developed Ebola, which lead the researchers to claim that the vaccine is 100% effective. Only 9 from the delayed vaccination group developed Ebola within 10 days of vaccination, but the researchers figured that these people probably contacted Ebola prior to the vaccination, since the disease requires typically about 10 days to show its ugly  horns.

So this is great news. Absolutely great. Even if, as always, I could nitpick thorough the paper, squabble over the “typically” 10-day incubation period, and cock an eyebrow at the new-fangled ring vaccination design as opposed to the old-fashioned placebo approach. Even after these minor criticisms this is – I repeat – GREAT NEWS!

P.S. Don’t ever say that the UN didn’t do anything for you.


Reference: Henao-Restrepo AM, Camacho A, Longini IM, Watson CH, Edmunds WJ, Egger M, Carroll MW, Dean NE, Diatta I, Doumbia M, Draguez B, Duraffour S, Enwere G, Grais R, Gunther S, Gsell PS, Hossmann S, Watle SV, Kondé MK, Kéïta S, Kone S, Kuisma E, Levine MM, Mandal S, Mauget T, Norheim G, Riveros X, Soumah A, Trelle S, Vicari AS, Røttingen JA, Kieny MP. (22 Dec 2016). Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). Lancet. pii: S0140-6736(16)32621-6. doi: 10.1016/S0140-6736(16)32621-6. PMID: 28017403 [Epub ahead of print] ARTICLE | FREE FULLTEXT PDF | Good Nitpicking in The Conversation

By Neuronicus, 18 January 2017



The FIRSTS: The Name of Myelin (1854)

One reason why I don’t post more often is that I have such a hard time deciding what to cover (Hint: send me stuff YOU find awesome). Most of the cool and new stuff is already covered by big platforms with full-time employees and I try to stay away of the media-grabbers. Mostly. Some papers I find so cool that it doesn’t matter that professional science journalists have already covered them and I too jump on the wagon with my meager contribution. Anyway, here is a glimpse on how my train of thought goes on inspiration-less days.

Inner monologue: Check the usual journals’ current issues. Nothing catches my eye. Maybe I’ll feature a historical. Open Wikipedia front page and see what happened today throughout history. Aha, apparently Babinski died in 1932. He’s the one who described the Babinski’s sign. Normally, when the sole of the foot is stroked, the big toe flexes inwards, towards the sole. If it extends upwards, then that’s a sure sign of neurological damage, the Babinski’s sign. But healthy infants can have that sign too not because they have neurological damage, but because their corticospinal neurons are not fully myelinated. Myelin, who discovered that? Probably Schwann. Quick search on PubMed. Too many. Restrict to ‘history”. I hate the search function on PubMed, it brings either to many or no hits, no matter the parameters. Ah, look, Virchow. Interesting. Aha. Find the original reference. Aha. Springer charges 40 bucks for a paper published in 1854?! The hell with that! I’m not even going to check if I have institutional access. Get the pdf from other sources. It’s in German. Bummer. Go to Highwire. Find recent history of myelin. Mielinization? Myelination? Myelinification? All have hits… Get “Fundamental Neuroscience” off of the shelf and check… aha, myelination. Ok. Look at the pretty diagram with the saltatory conduction! Enough! Go back to Virchow. Does it have pictures, maybe I can navigate the legend? Nope. Check if any German speaking friends are online. Nope, they’re probably asleep, which is what I should be doing. Drat. Refine Highwire search. Evrika! “Hystory of Myelin” by Boullerne, 2016. Got the author manuscript. Hurray. Read. Write.

Myelinated fibers, a.k.a. white matter has been observed and described by various anatomists, as early as the 16th century, Boullerne (2016) informs us. But the name of myelin was given only in 1854 by Rudolph Virchow, a physician with a rich academic and public life. Although Virchow introduced the term to distinguish between bone marrow and the medullary substance, paradoxically, he managed to muddy waters even more because he did not restrict the usage of the term mylein to … well, myelin. He used it also to refer to substances in blood cells and egg’s yolk and spleen and, frankly, from the quotes provided in the paper, I cannot make heads or tails of what Virchow thought myelin was. The word myelin comes form the Greek myelos or muelos, which means marrow.

Boullerne (2016) obviously did a lot of research, as the 53-page account is full of quotes from original references. Being such a scholar on the history of myelin I have no choice but to believe her when she says: “In 1868, the neurologist Jean-Martin Charcot (1825-1893) used myelin (myéline) in what can be considered its first correct attribution.”

So even if Virchow coined the term, he was using it incorrectly! Nevertheless, in 1858 he correctly identified the main role of myelin: electrical insulation of the axon. Genial insight for the time.


I love historical reviews of sciency stuff. This one is a ‘must-have’ for any biologist or neuroscientist. Chemists and physicists, too, don’t shy away; the paper has something for you too, like myelin’s biochemistry or its birefringence properties.

Reference: Boullerne, AI (Sep 2016, Epub 8 Jun 2016). The history of myelin. Experimental Neurology, 283(Pt B): 431-45. doi: 10.1016/j.expneurol.2016.06.005. ARTICLE

Original Reference: Virchow R. (Dec 1854). Ueber das ausgebreitete Vorkommen einer dem Nervenmark analogen Substanz in den thierischen Geweben. Archiv für pathologische Anatomie und Physiologie und für klinische Medicin, 6(4): 562–572. doi:10.1007/BF02116709. ARTICLE

P.S. I don’t think is right that Springer can retain the copyright for the Virchow paper and charge $39.95 for it. I don’t think they have the copyright for it anyway, despite their claims, because the paper is 162 years old. I am aware of no German or American copyright law that extends for so long. So, if you need it for academic purposes, write to me and thou shall have it.

By Neuronicus, 29 October 2016


The FIRSTS: the von Economo neurons (1881, 1904, 1926)

A von Economo neuron, also known as a spindle neuron, is a unique cell with several interesting characteristics:

1) It has a long axon and on the opposite side of the cell body has only one long dendrite, resembling a spindle and hence the nickname.

2) It is to be found only in humans, apes, elephants, dolphins, whales, and a few other animals known for their intricate social structure.

3) In humans, they exist only in the frontal part of the brain.

4) It is thought to be important for social awareness.

In all fairness, these cells should be called Betz cells, or at least Ramón y Cajal cells because these neuroanatomists mentioned their existence in 1881 and 1904, respectively. But Betz already has his own neurons, and Ramón y Cajal, well… his fame is established already. But von Economo “made a more complete description of their morphology and mapped their specific locations in human cortex” (Allman et al., 2011)

So what do we know about von Economo? Quite a lot, thanks to Triarhou, an excellent biographer. Constantin von Economo (1876–1931) was born in Brăila, Romania to a wealthy family of Greek descent. Shorty after his birth, the family moved from Romania to Austria where the father acquired a “von” in front of his name by way of elevation to the rank of baron.

Von Economo went to medical school  in Vienna, traveled a lot across the globe, graduated, spent some more time here and there learning psychiatry, physiology, neurology and such with some Big Names, then returned to Vienna where he followed the classic academic path (for his time). He was a prolific writer, having published at least 139 scientific works in a relatively short time.

Besides the spindle neurons, he is also known for publishing an awesome brain atlas in 1925 (with Georg Koskinas) and for investigating in detail a mysterious and weird disease, encephalitis lethargica (the ‘von Economo disease’). This disease has unknown causes to the day, partly because it is very difficult to study, having virtually disappeared form the face of the Earth after a furious epidemic in 1926.  But about that enigma some other time.

For now, enjoy von Economo’s drawings.

Composite image of the four drawings by von Economo (1926) in doi:10.1007/BF02970950.

Notes: 1) One last thing. Although according to Springer’s website the copyright for the von Economo paper I’m citing should have expired, Springer still charges a lot of money to obtain it (if you don’t have an institutional license like some of us, the fortunates, that is). I have attempted to contact Springer about it with no luck. Anyway, if you want it, email me at It’s been more than 70 years since the death of the author, so it should be public domain.

2) I have no idea why people reference the Ramón y Cajal’s Textura del Sistema Nervioso del Hombre y de los Vertebrados as published in 1889. I got it from Google Books and it says 1904 on it.


  1. von Economo, C. (1926). Eine neue Art Spezialzellen des Lobus cinguli und Lobus insulae (‘A new kind of special cells in the cingulum and insula’). Zeitschr. Ges. Neurol Psychiatr (Berlin), 100: 706–712. DOI: 10.1007/BF02970950. ARTICLE
  2. Allman JM, Tetreault NA, Hakeem AY, Manaye KF, Semendeferi K, Erwin JM, Park S, Goubert V, & Hof PR (Apr 2011). The von Economo neurons in the frontoinsular and anterior cingulate cortex. Annals of the New York Academy of Sciences, 1225:59-71. PMID: 21534993. PMCID: PMC3140770. DOI: 10.1111/j.1749-6632.2011.06011.x. ARTICLE | FREE FULLTEXT PDF 
  3. Triarhou, LH (14 Apr 2006, Epub 28 Feb 2006). The signalling contributions of Constantin von Economo to basic, clinical and evolutionary neuroscience. Brain Research Bulletin, 69 (3): 223–243. PMID: 16564418, DOI: 10.1016/j.brainresbull.2006.02.001. ARTICLE

By Neuronicus, 25 September 2016

Who invented optogenetics?

Wayne State University. Ever heard of it? Probably not. How about Zhuo-Hua Pan? No? No bell ringing? Let’s try a different approach: ever heard of Stanford University? Why, yes, it’s one of the most prestigious and famous universities in the world. And now the last question: do you know who Karl Deisseroth is? If you’re not a neuroscientist, probably not. But if you are, then you would know him as the father of optogenetics.

Optogenetics is the newest tool in the biology kit that allows you to control the way a cell behaves by shining a light on it (that’s the opto part). Prior to that, the cell in question must be made to express a protein that is sensitive to light (i.e. rhodopsin) either by injecting a virus or breeding genetically modified animals that express that protein (that’s the genetics part).

If you’re watching the Nobel Prizes for Medicine, then you would also be familiar with Deisseroth’s name as he may be awarded the Nobel soon for inventing optogenetics. Only that, strictly speaking, he did not. Or, to be fair and precise at the same time, he did, but he was not the first one. Dr. Pan from Wayne State University was. And he got scooped.98.png

The story is at length imparted to us by Anna Vlasits in STAT and republished in Scientific American. In short, Dr. Pan, an obscure name in an obscure university from an ill-famed city (Detroit), does research for years in an unglamorous field of retina and blindness. He figured, quite reasonably, that restoring the proteins which sense light in the human eye (i.e. photoreceptor proteins) could restore vision in the congenitally blind. The problem is that human photoreceptor proteins are very complicated and efforts to introduce them into retinas of blind people have proven unsuccessful. But, in 2003, a paper was published showing how an algae protein that senses light, called channelrhodopsin (ChR), can be expressed into mammalian cells without loss of function.

So, in 2004, Pan got a colleague from Salus University (if Wayne State University is a medium-sized research university, then Salus is a really tiny, tiny little place) to engineer a ChR into a virus which Pan then injected in rodent retinal neurons, in vivo. After 3-4 weeks he obtained the expression of the protein and the expression was stable for at least 1 year, showing that the virus works nicely. Then his group did a bunch of electrophysiological recordings (whole cell patch-clamp and voltage clamp) to see if shining light on those neurons makes them fire. It did. Then, they wanted to see if ChR is for sure responsible for this firing and not some other proteins so they increased the intensity of the blue light that the ChR is known to sense and observed that the cell responded with increased firing. Now that they saw the ChR works in normal rodents, next they expressed the ChR by virally infecting mice who were congenitally blind and repeated their experiments. The electrophysiological experiments showed that it worked. But you see with your brain, not with your retina, so the researchers looked to see if these cells that express ChR project from retina to the brain and they found their axons in lateral geniculate and superior colliculus, two major brain areas important for vision. Then, they recorded from these areas and the brain responded when blue light, but not yellow or other colors, was shone on the retina. The brain of congenitally blind mice without ChR does not respond regardless of the type of light shone on their retinas. But does that mean the mouse was able to see? That remains to be seen (har har) in future experiments. But the Pan group did demonstrate that they can control neurons by light.

All in all, a groundbreaking paper. So the Pan group was not off the mark when they submitted it to Nature on November 25, 2004. As Anna Vlasits reports in the Exclusive, Nature told Pan to submit to a more specialized journal, like Nature Neuroscience, which then rejected it. Pan submitted then to the Journal of Neuroscience, which also rejected it. He submitted it then to Neuron on November 29, 2005, which finally accepted it. Got published on April 6, 2006. Deisseroth’s paper was submitted to Nature Neuroscience on May 12, 2005, accepted on July, and published on August 14, 2005… His group infected rat hippocampal neurons cultured in a Petri dish with a virus carrying the ChR and then they did some electrophysiological recordings on those neurons while shining lights of different wavelengths on them, showing that these cells can be controlled by light.

There’s more on the saga with patent filings and a conference where Pan showed the ChR data in May 2005 and so on, you can read all about it in Scientific American. The magazine is just hinting to what I will say outright, loud and clear: Pan didn’t get published because of his and his institution’s lack of fame. Deisseroth did because of the opposite. That’s all. This is not about squabbles about whose work is more elegant, who presented his work as a scientific discovery or a technical report or whose title is more catchy, whose language is more boisterous or native English-speaker or luck or anything like that. It is about bias and, why not?, let’s call a spade a spade, discrimination. Nature and Journal of Neuroscience are not caught doing this for the first time. Not by a long shot. The problem is that they are still doing it, that is: discriminating against scientific work presented to them based on the name of the authors and their institutions. Personally, so I don’t get comments along the lines of the fox and the grapes, I have worked at both high profile and low profile institutions. And I have seen the difference not in the work, but in the reception.

That’s my piece for today.

Source:  STAT, Scientific American.


1) Bi A, Cui J, Ma YP, Olshevskaya E, Pu M, Dizhoor AM, & Pan ZH (6 April 2006). Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron, 50(1): 23-33. PMID: 16600853. PMCID: PMC1459045. DOI: 10.1016/j.neuron.2006.02.026. ARTICLE | FREE FULLTEXT PDF

2) Boyden ES, Zhang F, Bamberg E, Nagel G, & Deisseroth K. (Sep 2005, Epub 2005 Aug 14). Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience, 8(9):1263-1268. PMID: 16116447. DOI: 10.1038/nn1525. doi:10.1038/nn1525. ARTICLE 

By Neuronicus, 11 September 2016




The FIRSTS: Theory of Mind in non-humans (1978)

Although any farmer or pet owner throughout the ages would probably agree that animals can understand the intentions of their owners, not until 1978 has this knowledge been scientifically proven.

Premack & Woodruff (1978) performed a very simple experiment in which they showed videos to a female adult chimpanzee named Sarah involving humans facing various problems, from simple (can’t reach a banana) to complex (can’t get out of the cage). Then, the chimps were shown pictures of the human with the tool that solved the problem (a stick to reach the banana, a key for the cage) along with pictures where the human was performing actions that were not conducive to solving his predicament. The experimenter left the room while the chimp made her choice. When she did, she rang a bell to summon the experimenter back in the room, who then examined the chimp’s choice and told the chimp whether her choice was right or wrong. Regardless of the choice, the chimp was awarded her favorite food. The chimp’s choices were almost always correct when the actor was its favourite trainer, but not so much when the actor was a person she disliked.

Because “no single experiment can be all things to all objections, but the proper combination of results from [more] experiments could decide the issue nicely” (p. 518), the researchers did some more experiments which were variations of the first one designed to figure out what the chimp was thinking. The authors go on next to discuss their findings at length in the light of two dominant theories of the time, mentalism and behaviorism, ruling in favor of the former.

Of course, the paper has some methodological flaws that would not pass the rigors of today’s reviewers. That’s why it has been replicated multiple times in more refined ways. Nor is the distinction between behaviorism and cognitivism a valid one anymore, things being found out to be, as usual, more complex and intertwined than that. Thirty years later, the consensus was that chimps do indeed have a theory of mind in that they understand intentions of others, but they lack understanding of false beliefs (Call & Tomasello, 2008).

95chimpToM - Copy


1. Premack D & Woodruff G (Dec. 1978). Does the chimpanzee have a theory of mind? The Behavioral and Brain Sciences, 1 (4): 515-526. DOI: 10.1017/S0140525X00076512. ARTICLE

2. Call J & Tomasello M (May 2008). Does the chimpanzee have a theory of mind? 30 years later. Trends in Cognitive Sciences, 12(5): 187-192. PMID: 18424224 DOI: 10.1016/j.tics.2008.02.010. ARTICLE  | FULLTEXT PDF

By Neuronicus, 20 August 2016

THE FIRSTS: The word ‘scientist’ (1834)

Scientist, by any other name…

History of science is, unfortunately, not among the mandatory classes required for earning a diploma that allows oneself to be called a scientist. Worrisomely, nor is Logic as a formal class. All the more the pity because in the Middle Ages, when the word science entered the English language, to have scientific knowledge meant you have arrived at it by following the Aristotelian way of logical reasoning (a.k.a deductions and inductions). To be fair, the word existed already in Romance languages with the same meaning: new knowledge obtained by applying the rules of Aristotelian syllogisms. By the way, Aristotle is also the guy to whom we owe the basis of the scientific method, but that’s a story for another day.

Although words like scientific or science were altogether frequently used with regards of the scholarly endeavors of the ladies and gentlemen of the early 19th Century (yes, there were ladies too that dabbled into the sciences, even if sometimes it was only to write about the spectacular discoveries and controversies of their time), the term scientist has been officially coined in 1834 by William Whewell. A man truly blessed in the art of words, being credited with coining a lot of other famous words like anode and physicist, he proposed the word in a review of a science popularization book written by one Mrs. Somerville. The circumstance of how this came to be is masterly imparted to us by Sydney Ross in a superb historical account of the word scientist, published in 1962.

For the rounded scientist or for the merely curious, I truly recommend the lecture of the referenced papers. They’re delightful!

94 - Copy

Reference 1. [Whewell W] (1834). Art. III. [Review of] On the Connexion of the Physical Sciences. By Mrs. Somerville. The Quarterly Review, 51: 58-61. FULLTEXT PDF at GoogleBooks

Reference 2. Ross S (1962). Scientist: The story of a word, Annals of Science, 18:2, 65-85, DOI: 10.1080/00033796200202722. FREE FULLTEXT PDF

P.S. I checked and Wikipedia is correct with the following statement:

“To be exact, the person coined the term scientist was referred to in Whewell 1834 only as “some ingenious gentleman.” Ross added a comment that this “some ingenious gentleman” was Whewell himself, without giving the reason for the identification. Ross 1962, p.72.”

Even if, by some very slim chance, the “ingenious gentleman” was not Whewell himself, Whewell did propose the term scientist in a more formal manner six years later in 1840 bringing more than just linguistic justifications, like the diversity of those engaged in scientific endeavors and how they don’t call themselves natural philosophers anymore.

By Neuronicus, 9 August 2016

The FIRSTS: The rise and fall of Pokemon (2001-2005?)

90pok - Copy

Few people know that Pokemon refers not only to a game, but also to a gene. An oncogene, to be precise, with a rather strange story.

An oncogene is a gene that promotes cancer (from oncology). Conventionally, a gene name is written in lowercase italicized letters (pokemon), whereas the protein the gene makes is not italicized (POKEMON, Pokemon, or pokemon, depending on the species). Maeda et al. (2005) first established in a Petri dish that the Pokemon is required for the growth of malignant tumors. Then, through a series of classic molecular biology experiments, the scientists found out how exactly Pokemon acts to accomplish this (by suppressing the expression of anti-cancer genes). Next, they engineered mice with pokemon overexpressed and saw that the mice with a lot of Pokemon “developed aggressive tumours” (p. 282). Then the authors checked how is this gene behaving in human cancers and found out that “Pokemon is expressed at very high levels in a subset of human lymphomas” (p. 284).

And here is how the gene got its name, according to Pier Paolo Pandolfi, the leader of the research group. Bear with me because it’s complicated. [*Takes deep breath*]: PO in POK stands for POZ domain (poxvirus and zinc finger) and K in POK stands for Krüppel (zinc finger transcription factor) whereas EMON stands for erythroid myeloid ontogenic factor. POK-EMON. Simple, eh? Phew…

Truth be told, Pandolfi first named the gene pokemon at a conference in 2001 (Simonite, 2005). Then the name has been used by researchers at various scientific meetings and poster presentations.

But when the Maeda et al. paper was published in Nature in 2005 which discovered the mechanism through which the gene promotes cancer, a lot of people, scientists and journalists alike, in an attempt to humour, flooded the internet with eye-catching titles along the lines of “Pokemon causes cancer”, “Pokemon kills you” and the like. I mean, even the researchers themselves in the abstract of the paper state: “Pokemon is aberrantly overexpressed in human cancers”. In response, The Pokémon Company threatened to sue for trademark copyright infringement because they didn’t want the game to be associated with cancer, like the gene is, even if the researches said the name is an acronym (maybe they meant backronym?). In the end, the researchers changed the name of the pokemon gene to the far less enticing zbtb7.

As the question mark in the title of the post suggests, the pokeman gene may not be entirely dead yet because there are stubborn scientists that still use the name pokemon and not zbtb7. I hope they have the cash to take on Nintendo if they decide to sue after all.

Too bad the zbtb7 (a.k.a. pokemon) gene was not a beneficial gene… Because another group of researchers named their new-found gene in 2008 pikachurin and so far, Nintendo din not make any waves… That is, probably, because Pikachurin is a protein in the eye retina that is required for proper vision by speeding the electric signals. Zip zip zip Pikachurin goes…


  1. Maeda T, Hobbs RM, Merghoub T, Guernah I, Zelent A, Cordon-Cardo C, Teruya-Feldstein J, & Pandolfi PP (20 Jan 2005). Role of the proto-oncogene Pokemon in cellular transformation and ARF repression. Nature, 433(7023):278-85. PMID: 15662416, DOI: 10.1038/nature03203. ARTICLE | FULLTEXT PDF at Univ. Barcelona
  2. Simonite T (15 Dec 2005). Pokémon blocks gene name. Nature, 438(7070):897. PMID: 16355177, DOI: 10.1038/438897a. ARTICLE 

By Neuronicus, 18 July 2016

THE FIRSTS: The Mirror Neurons (1988)

There are some neurons in the human brain that fire both when the person is doing some behavior and when watching that behavior performed by someone else. These cells are called mirror neurons and were first discovered in 1988 (see NOTE) by a group of researchers form the University of Parma, Italy, led by Giacomo Rizzolatti.

The discovery was done by accident. The researchers were investigating the activity of neurons in the rostral part of the inferior premotor cortex (riPM) of macaque monkeys with electrophysiological recordings. They placed a box in front of the monkey which had various objects in it. When the monkey pressed a switch, the content of the box was illuminated, then a door would open and the monkey reached for an object. Under each object was hidden a small piece of food. Several neurons were discharging when the animal was grasping the object. But the researchers noticed that some of these neurons ALSO fired when the monkey was motionless and watching the researcher grasping the objects!

The authors then did more motions to see when exactly the two neurons were firing, whether it’s related to the food or threatening gestures and so on. And then they recorded from some 182 more neurons while the monkey or the experimenter were performing hand actions with different objects. Importantly, they also did an electromyogram (EMG) and saw that when the neurons that were firing when the monkey was observing actions, the muscles did not move at all.

They found that some neurons responded to both when doing and seeing the actions, whereas some other neurons responded only when doing or only when seeing the actions. The neurons that are active when observing are called mirror neurons now. In 1996 they were identified also in humans with the help of positron emission tomography (PET).

88mirror - Copy
In yellow, the frontal region; in red, the parietal region. Credits: Brain diagram by Korbinian Brodmann under PD license; Tracing by Neuronicus under PD license; Area identification and color coding after Rizzolatti & Fabbri-Destro (2010) © Springer-Verlag 2009.

It is tragicomical that the authors first submitted their findings to the most prestigious scientific journal, Nature, believing that their discovery is worth it, and rightfully so. But, Nature rejected their paper because of its “lack of general interest” (Rizzolatti & Fabbri-Destro, 2010)! Luckily for us, the editor of Experimental Brain Research, Otto Creutzfeld, did not share the Nature‘s opinion.

Thousands of experiments followed the tremendous discovery of mirror neurons, even trying to manipulate their activity. Many researchers believe that the activity of the mirror neurons is fundamental for understanding the intentions of others, the development of theory of mind, empathy, the process of socialization, language development and even human self-awareness.

NOTE: Whenever possible, I try to report both the date of the discovery and the date of publication. Sometimes, the two dates can differ quite a bit. In this case, the discovery was done in 1988 and the publishing in 1992.


  1. di Pellegrino G, Fadiga L, Fogassi L, Gallese V, & Rizzolatti G (October 1992). Understanding motor events: a neurophysiological study. Experimental Brain Research, 91(1):176-180. DOI: 10.1007/BF00230027. ARTICLE  | Research Gate FULLTEXT PDF
  2. Rizzolatti G & Fabbri-Destro M (Epub 18 Sept 2009; January 2010). Mirror neurons: From discovery to autism. Experimental Brain Research, 200(3): 223-237. DOI: 10.1007/s00221-009-2002-3. ARTICLE  | Research Gate FULLTEXT PDF 

By Neuronicus, 15 July 2016