The FIRSTS: Melatonin (1958)

By the late 18th and beginning of 19th century, some scientists were busily investigating how animals get their colors and how do they change colour in response to the environment. They identified several types of chromatophores, i.e. cells that contain pigments. Biological pigments are called melanins (don’t confuse them with melatonin). One of these cells is the melanophore which contains black pigments, called this way in the very typical scientist unimaginative style because “melas” in Greek means black or dark and “phoros” means carrier.

A couple of these scientists, McCord & Allen (1917), thought that the pineal gland from the brain might contain some substance that might interact with the melanophores. How did they get this idea is unclear from their paper; seems like a logical outcome of their contemporaries’ discussions and experiments, though they do not explain it in detail. They hint of other experiments where various glands have been fed to amphibians and then noticed their color change. So McCord & Allen obtained cow brains, extracted the pineal glands and fed them to tadpoles. Within 30 to 60 minutes, depending on the concentration, the tadpoles fed with pineal extract changed color from dark to light (see picture).

mccord1917 - Copy
Excerpt from McCord & Allen (1917, doi: 10.1002/jez.1400230108) showing the change in tadpole skin appearance after application of bovine pineal gland extract.

Fast forward now to 1958 when an MD PhD called Aaron B. Lerner with an interest in dermatology thought that whatever was responsible for the skin color changes in the McCord & Allen (1917) paper might be useful in treating skin diseases. But first he had to extract the substance from the pineal glands and he and his colleagues had better tools for this task than the mere alcohol and acetone of his brethren of 40 years ago.

Lerner et al. (1958) made full use of the then-recently discovered paper chromatography and some standard biochemistry techniques for the time like Soxhlet extraction and fluorescence spectroscopy and discovered a substance that can lighten frog skin color and can inhibit the melanocyte stimulating hormone (MSH). “It is suggested that this substance be called melatonin” (p. 2587). Lerner and his colleagues also isolated the MSH and cryoglobulin.

Changing skin color is one of melatonin’s minor roles; its main function is to regulate circadian rhythms like sleep and awake cycles in animals (it has an oxidative stress protection in plants). Melatonin, in animals, is produced by the pineal gland only, more during the night, less during the day. Pineal gets information about the day/night cycles from the eyes. In some countries melatonin is sold as an over the counter soporific, i.e. sleeping pill.

Melatonin - Copy


1) McCord CP & Allen FP (Jan 1917). Evidences associating pineal gland function with alterations in pigmentation. Journal of Experimental Zoology, Part A, 23 (1):  207–224, DOI: 10.1002/jez.1400230108 ARTICLE 

2) Lerner AB, Case JD, Takahashi Y, Lee TH, & Mori W (May 1958). Isolation of Melatonin, the Pineal Gland Factor that Lightens Melanocytes. Journal of the American Chemical Society, 80 (10), p. 2587–2587, DOI: 10.1021/ja01543a060 ARTICLE (although JACS gives access only to the first page of a paper, the fact that this article is only half a page makes their endeavour useless in this case)

By Neuronicus, 18 March 2017



Vanity and passion fruit

Ultraviolet irradiation exposure from our sun accelerates the skin aging, process called photoaging. It can even cause skin cancers. There has been some considerable research on how our beloved sun does that.

For example, one way the UV radiation leads to skin damage is by promoting the production of free radicals as reactive oxygen species (ROS), which do many bad things, like direct DNA damage. Another bad thing done by ROS is the upregulation of the mitogen-activated protein kinase (MAPK) signaling pathway which activates all sorts of transcription factors which, in turn, produce proteins that lead to collagen degradation and voilà, aged skin. I know I lost some of you at the MAPK point; you can think of MAPK as a massive proteinaceous hub, a multi-button console with many inputs and outputs. A very sensitive and incredibly complex hub that controls nearly all important aspects of cell function, with many feedback loops, so if you mess with it, cell Armageddon may be happening. Or nothing at all. It’s that complex.

But I digress. What MAPK is doing is less relevant for the paper I am introducing to you today than the fact that we have physiological markers for skin aging due to UV. Bravo et al. (2017) cultured human skin cells in a Petri dish, treated them with various concentrations of an extract of passion fruit (Passiflora tarminiana) and then bombarded them with UV (the B type, 280–315 nm). The authors made the extract themselves, is not something you just buy (yet).

The UV produced the expected damage, translated as increased matrix mettoproteinase-1 (MMP-1), collagenase, and ROS production and decreased procollagen. Pretreatment with passion fruit extract significantly mitigated these UV effects in a dose-dependant manner. The concentration of their concoction that worked best was 10 μg/mL. Then the authors did some more chemistry to figure out what in their concoction is responsible, or at least probably responsible, for the observed wonderful effects. The authors believe the procyianidins and flavonoids are the culprits because 1) they have been proven to be strong antioxidants before and 2) this plant has them in very high amounts.

Good news then for the antiaging cosmetics industry. Perhaps even for dermatologists and their patients.


Reference: Bravo K, Duque L, Ferreres F, Moreno DA, & Osorio E. (EPUB ahead of print: 3 Feb 2017). Passiflora tarminiana fruits reduce UVB-induced photoaging in human skin fibroblasts. Journal of Photochemistry and Photobiology, 168: 78-88. PMID: 28189068, DOI: 10.1016/j.jphotobiol.2017.01.023. ARTICLE

By Neuronicus, 13 February 2017


Painful Pain Paper

There has been much hype over the new paper published in the latest Nature issue which claims to have discovered an opioid analgesic that doesn’t have most of the side effects of morphine. If the claim holds, the authors may have found the Holy Grail of pain research chased by too many for too long (besides being worth billions of dollars to its discoverers).

The drug, called PZM21, was discovered using structure-based drug design. This means that instead of taking a drug that works, say morphine, and then tweaking its molecular structure in various ways and see if the resultant drugs work, you take the target of the drug, say mu-opioid receptors, and design a drug that fits in that slot. The search and design are done initially with sophisticated software and there are many millions of virtual candidates. So it takes a lot of work and ingenuity to select but a few drugs that will be synthesized and tested in live animals.

Manglik et al. (2016) did just that and they came up with PZM21 which, compared to morphine, is:

1) selective for the mu-opioid receptors (i.e. it doesn’t bind to anything else)
2) produces no respiratory depression (maybe a touch on the opposite side)
3) doesn’t affect locomotion
4) produces less constipation
5) produces long-lasting affective analgesia
6) and has less addictive liability

The Holy Grail, right? Weeell, I have some serious issues with number 5 and, to some extent, number 6 on this list.

Normally, I wouldn’t dissect a paper so thoroughly because, if there is one thing I learned by the end of GradSchool and PostDoc, is that there is no perfect paper out there. Consequently, anyone with scientific training can find issues with absolutely anything published. I once challenged someone to bring me any loved and cherished paper and I would tear it apart; it’s much easier to criticize than to come up with solutions. Probably that’s why everybody hates Reviewer No. 2…

But, for extraordinary claims, you need extraordinary evidence. And the evidence simply does not support the 5 and maybe 6 above.

Let’s start with pain. The authors used 3 tests: hotplate (drop a mouse on a hot plate for 10 sec and see what it does), tail-flick (give an electric shock to the tail and see how fast the mouse flicks its tail) and formalin (inject an inflammatory painful substance in the mouse paw and see what the animal does). They used 3 doses of PZM21 in the hotplate test (10, 20, and 40 mg/Kg), 2 doses in the tail-flick test (10 and 20), and 1 dose in the formalin test (20). Why? If you start with a dose-response in a test and want to convince me it works in the other tests, then do a dose-response for those too, so I have something to compare. These tests have been extensively used in pain research and the standard drug used is morphine. Therefore, the literature is clear on how different doses of morphine work in these tests. I need your dose-responses for your new drug to be able to see how it measures up, since you claim it is “more efficacious than morphine”. If you don’t want to convince me there is a dose-response effect, that’s fine too, I’ll frown a little, but it’s your choice. However, then choose a dose and stick with it! Otherwise I cannot compare the behaviors across tests, rendering one or the other test meaningless. If you’re wondering, they used only one dose of morphine in all the tests, except the hotplate, where they used two.

Another thing also related to doses. The authors found something really odd: PZM21 works (meaning produces analgesia) in the hotplate, but not the tail-flick tests. This is truly amazing because no opiate I know of can make such a clear-cut distinction between those two tests. Buuuuut, and here is a big ‘BUT” they did not test their highest dose (40mg/kg) in the tail-flick test! Why? I’ll tell you how, because I am oh sooo familiar with this argument. It goes like this:

Reviewer: Why didn’t you use the same doses in all your 3 pain tests?

Author: The middle and highest doses have similar effects in the hotplate test, ok? So it doesn’t matter which one of these doses I’ll use in the tail-flick test.

Reviewer: Yeah, right, but, you have no proof that the effects of the two doses are indistinguishable because you don’t report any stats on them! Besides, even so, that argument applies only when a) you have ceiling effects (not the case here, your morphine hit it, at any rate) and b) the drug has the expected effects on both tests and thus you have some logical rationale behind it. Which is not the case here, again: your point is that the drug DOESN’T produce analgesia in the tail-flick test and yet you don’t wanna try its HIGHEST dose… REJECT AND RESUBMIT! Awesome drug discovery, by the way!

So how come the paper passed the reviewers?! Perhaps the fact that two of the reviewers are long term publishing co-authors from the same University had something to do with it, you know, same views predisposes them to the same biases and so on… But can you do that? I mean, have reviewers for Nature from the same department for the same paper?

Alrighty then… let’s move on to the stats. Or rather not. Because there aren’t any for the hotplate or tail-flick! Now I know all about the “freedom from the tyranny of p” movement (that is: report only the means, standard errors of mean, and confidence intervals and let the reader judge the data) and about the fact that the average scientist today needs to know 100-fold more stats that his predecessors 20 years ago (although some biologists and chemists seem to be excused from this, things either turn color or not, either are there or not etc.) or about the fact that you cannot get away with only one experiment published these days, but you need a lot of them so you have to do a lot of corrections to your stats so you don’t fall into the Type 1 error. I know all about that, but just like the case with the doses, choose one way or another and stick to it. Because there are ANOVAs ran for the formalin test, the respiration, constipation, locomotion, and conditioned place preference tests, but none for the hotplate or tailflick! I am also aware that to be published in Science or Nature you have to strip your work and wordings to the bare minimum because the insane wordcount limits, but you have free rein in the Supplementals. And I combed through those and there are no stats there either. Nor are there any power analyses… So, what’s going on here? Remember, the authors didn’t test the highest dose on the tail-flick test because – presumably – the highest and intermediary doses have indistinguishable effects, but where is the stats to prove it?

And now the thing that really really bothered me: the claim that PZM21 takes away the affective dimension of pain but not the sensory. Pain is a complex experience that, depending on your favourite pain researcher, has at least 2 dimensions: the sensory (also called ‘reflexive’ because it is the immediate response to the noxious stimulation that makes you retract by reflex the limb from whatever produces the tissue damage) and the affective (also called ‘motivational’ because it makes the pain unpleasant and motivates you to get away from whatever caused it and seek alleviation and recovery). The first aspect of pain, the sensory, is relatively easy to measure, since you look at the limb withdrawal (or tail, in the case of animals with prolonged spinal column). By contrast, the affective aspect is very hard to measure. In humans, you can ask them how unpleasant it is (and even those reports are unreliable), but how do you do it with animals? Well, you go back to humans and see what they do. Humans scream “Ouch!” or swear when they get hurt (so you can measure vocalizations in animals) or humans avoid places in which they got hurt because they remember the unpleasant pain (so you do a test called Conditioned Place Avoidance for animals, although if you got a drug that shows positive results in this test, like morphine, you don’t know if you blocked the memory of unpleasantness or the feeling of unpleasantness itself, but that’s a different can of worms). The authors did not use any of these tests, yet they claim that PZM21 takes away the unpleasantness of pain, i.e. is an affective analgesic!

What they did was this: they looked at the behaviors the animal did on the hotplate and divided them in two categories: reflexive (the lifting of the paw) and affective (the licking of the paw and the jumping). Now, there are several issues with this dichotomy, I’m not even going to go there; I’ll just say that there are prominent pain researchers that will scream from the top of their lungs that the so-called affective behaviors from the hotplate test cannot be indexes of pain affect, because the pain affect requires forebrain structures and yet these behaviors persist in the decerebrated rodent, including the jumping. Anyway, leaving the theoretical debate about what those behaviors they measured really mean aside, there still is the problem of the jumpers: namely, the authors excluded from the analysis the mice who tried to jump out of the hotplate test in the evaluation of the potency of PZM21, but then they left them in when comparing the two types of analgesia because it’s a sign of escaping, an emotionally-valenced behavior! Isn’t this the same test?! Seriously? Why are you using two different groups of mice and leaving the impression that is only one? And oh, yeah, they used only the middle dose for the affective evaluation, when they used all three doses for potency…. And I’m not even gonna ask why they used the highest dose in the formalin test…but only for the normal mice, the knockouts in the same test got the middle dose! So we’re back comparing pears with apples again!

Next (and last, I promise, this rant is way too long already), the non-addictive claim. The authors used the Conditioned Place Paradigm, an old and reliable method to test drug likeability. The idea is that you have a box with 2 chambers, X and Y. Give the animal saline in chamber X and let it stay there for some time. Next day, you give the animal the drug and confine it in chamber Y. Do this a few times and on the test day you let the animal explore both chambers. If it stays more in chamber Y then it liked the drug, much like humans behave by seeking a place in which they felt good and avoiding places in which they felt bad. All well and good, only that is standard practice in this test to counter-balance the days and the chambers! I don’t know about the chambers, because they don’t say, but the days were not counterbalanced. I know, it’s a petty little thing for me to bring that up, but remember the saying about extraordinary claims… so I expect flawless methods. I would have also liked to see a way more convincing test for addictive liability like self-administration, but that will be done later, if the drug holds, I hope. Thankfully, unlike the affective analgesia claims, the authors have been more restrained in their verbiage about addiction, much to their credit (and I have a nasty suspicion as to why).

I do sincerely think the drug shows decent promise as a painkiller. Kudos for discovering it! But, seriously, fellows, the behavioral portion of the paper could use some improvements.

Ok, rant over.

EDIT (Aug 25, 2016): I forgot to mention something, and that is the competing financial interests declared for this paper: some of its authors already filed a provisional patent for PZM21 or are already founders or consultants for Epiodyne (a company that that wants to develop novel analgesics). Normally, that wouldn’t worry me unduly, people are allowed to make a buck from their discoveries (although is billions in this case and we can get into that capitalism-old debate whether is moral to make billions on the suffering of other people, but that’s a different story). Anyway, combine the financial interests with the poor behavioral tests and you get a very shoddy thing indeed.

Reference: Manglik A, Lin H, Aryal DK, McCorvy JD, Dengler D, Corder G, Levit A, Kling RC, Bernat V, Hübner H, Huang XP, Sassano MF, Giguère PM, Löber S, Da Duan, Scherrer G, Kobilka BK, Gmeiner P, Roth BL, & Shoichet BK (Epub 17 Aug 2016). Structure-based discovery of opioid analgesics with reduced side effects. Nature, 1-6. PMID: 27533032, DOI: 10.1038/nature19112. ARTICLE 

By Neuronicus, 21 August 2016

The Firsts: Anandamide (1992)

seedling cannabis-1062908_1920
Cannabis, the plant whose psychoactive tetrahydrocannabinol (THC) binds to the same receptors in the brain as anandamide.

A rare tragedy took place in France a few days ago when a Phase I clinical trial for a new drug destined to improve mood and alleviate pain has resulted in one person dead and five other hospitalized. Phase I means that the drug successfully passed all animal tests and was being tried for the first time in humans to test its safety (efficacy and potency are tested in phase II and III, respectively).

The trial has been suspended and an investigation is on the way. So far, it appears that both the manufacturer (Bial) and the testing company (Biotrial) have followed all the guidelines and regulations. The running hypothesis is that the drug (BIA 10-2474) is acting on an unexpected target. What does that mean?

BIA 10-2474 is a FAAH inhibitor (fatty acid amide hydrolase). This enzyme breaks down anandamide, which is an endocannabinoid. In other words, is a neurotransmitter in the brain that binds to the same receptors as THC, the main active component of marijuana. So, if you give someone BIA 10-2474, the result would be an increase in the availability of anandamide, presumably with anxiolytic and analgesic effects (yes, similar to smoking weed).

There are other FAAH inhibitors out there that had been previously tried in humans and they were never marketed not because they were unsafe, but because they were ineffective in producing the desired results.

So we don’t know yet why BIA 10-2474 killed people, but the bet is that in addition to FAAH, it also binds to some other protein. Why they didn’t discover this in animal trials, is a mystery; perhaps the unknown protein is unique to humans? By the looks of the drug’s structure, I think is computer generated, meaning is composed of a bunch of functional groups that someone put together in the hopes that it would fit neatly on the target binding site; but so many functional groups thrown in together might bind unexpectedly to other places than the intended. More on the story in Nature.

Anyway, that was the very long intro to today’s featured paper: the discovery of anandamide. Which happened very recently, in 1992, by the Mechoulam group at Hebrew University of Jerusalem, Israel. Anandamide is the first endocannabinoid to be isolated. Mechoulam’s postodcs, William Devane and Lumir Hanus, used mass spectroscopy and NMR (the counterpart of MRI) to identify and isolate the molecule in a pig brain. And then they named it, fittingly, the “amide of bliss”…

Of note, members of the same Mechoulam group identified two more of the six known endocannabinoids. The three pages paper is highly technical, but I am assured (by a chemist) that is an easy-peasy read for any organic chemist.

Reference: Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, & Mechoulam R (18 Dec 1992). Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science, 258(5090):1946-9. PMID: 1470919, DOI: 10.1126/science.1470919.  Article | Research Gate Full Text

By Neuronicus, 18 January 2016

The FIRSTS: the isolation of tryptophan (1901)

The post-Thanksgiving dinner drowsiness is due to the very carbohydrates-rich meal and not to the amounts of tryptophan in the turkey meat, which are not higher that those in chicken.

There is a myth that says the post-Thanksgiving dinner drowsiness is due to high amounts of tryptophan found in the turkey meat. Nothing farther from the truth; in fact, it is due to the high amounts of carbohydrates in the Thanksgiving dinner which trigger massive insulin production. Anyway, the myth still goes on, despite evidence that the turkey has about the same amount of tryptophan as the chicken. That being said, what’s this tryptophan business?

Tryptophan is an amino acid necessary for many things in the body, including the production of serotonin, a brain neurotransmitter. You cannot live without it and your body cannot make it. Thus, you need to eat it. There are many sources of tryptophan, like eggs, soybeans, cheeses, various meats and so on.

Tryptophan was first isolated by Hopkins & Cole (1901) through hydrolysis of casein, a protein found in milk. And there were no two ways about it: “there is indeed not the smallest doubt that our substance is the much-sought tryptophane” (p. 427). No “we’re confident that…”, “we’re suggesting this…”, no maybe, possibly, probably, and most likely’s that one finds in an overwhelming abundance in the cautious tone adopted by today’s studies. Many more scientists today, fewer job openings, one has a career to think about…

Digression aside, Hopkins went on later to prove that tryptophan is an essential amino acid by feeding mice a tryptophan-free diet (and the mice died). By 1929 he was knighted and he got the Nobel prize for his contributions in the vitamin field. Also, a little known fact for you, butter lovers, Hopkins proved that margarine is worse that butter because it lacks certain vitamins and you have him to thank for the vitamin-enriched margarine that you find today.

Reference: Hopkins FG & Cole SW (Dec 1901). A contribution to the chemistry of proteids: Part I. A preliminary study of a hitherto undescribed product of tryptic digestion. The Journal of Physiology, 27 (4-5): 418–28. doi:10.1113/jphysiol.1901.sp000880. PMC 1540554. PMID 16992614. Article | FREE FULLTEXT PDF

By Neuronicus, 27 November 2015